找回密码
 注册
关于网站域名变更的通知
查看: 425|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 + R- M7 t5 `% ^* B
: h& V& O; d# j" t, p6 {2 x$ V0 F/ _

! V8 t0 h( P) F; u' K+ A! ^NSGA2的过程为:
  L: A$ E) j) y+ M) w( a& p2 h' v1 ~+ E' U" g/ P
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
6 J: u+ X. T+ `3 n
% S: f5 m* j0 f2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
" q/ z, _" F( U. S) ?5 k9 H) V8 h. W7 p  s9 |7 X
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F35 l; e3 C# ]/ S1 y
4 [% |' |3 h, g- h) P* {* _
下面是完整版的代码:# D! h" |3 W$ x8 g$ ]

: y; w" c( _& M$ }* `. k①nsga2-optimization.m1 }9 y( s6 k) b( u; c& N/ @* @

8 ?+ Y" s% N3 K% `: S0 s  N/ J3 vfunction nsga_2_optimization
! F* U% H0 ^4 t* U8 i* E# q0 l%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
& B  H3 [! i6 F0 p2 R%此处可以更改
, B" n3 c! S2 d% h, C%更多机器学习内容请访问omegaxyz.com9 @1 R  \6 G$ J8 ]9 O  D7 Y$ O2 S
pop = 500; %种群数量# I8 j3 |, c. V
gen = 500; %迭代次数
3 N5 D: w1 [$ c  ~3 a0 P! T7 _) D. pM = 2; %目标数量
" O# i4 J' N  ]# K( RV = 30; %维度
  ]+ f" H. F, _6 pmin_range = zeros(1, V); %下界
  M# \: K. o; y+ l5 rmax_range = ones(1,V); %上界0 x, `6 K' \1 {+ T' R" ^- s7 M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
" b% X- e9 n7 h6 X2 |$ Z* [2 X5 V8 xchromosome = initialize_variables(pop, M, V, min_range, max_range);
- A& t* r2 P# T% n5 M0 Z/ Vchromosome = non_domination_sort_mod(chromosome, M, V);; `2 R# l2 J- f# u# |# ^4 W! D7 L

# n: L7 K- Z$ rfor i = 1 : gen
1 m. {8 y0 b. X9 S$ M) J    pool = round(pop/2);
  j' f1 f' Q; b    tour = 2;$ c1 L( i- B0 ]% |( Y4 Y
    parent_chromosome = tournament_selection(chromosome, pool, tour);
+ `- v; o( |/ ^) u# l: p: j    mu = 20;4 L1 D0 Z* m- f7 D( A
    mum = 20;. U1 u2 q+ p9 `  n: `8 Z# K$ G( B
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
4 ^- I' Q  }6 j3 G. _6 \    [main_pop,~] = size(chromosome);7 H3 k/ l; |8 R- I4 w' X: y  }7 Z1 L
    [offspring_pop,~] = size(offspring_chromosome);9 u2 U* H+ ~: e6 k6 Z- ^
    clear temp
0 s7 s7 l- l' E$ r0 c0 b& R    intermediate_chromosome(1:main_pop,:) = chromosome;
' M. g, l' N6 l4 }    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
0 }) g5 y+ y- q  U    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);, B) W5 o- D# e' o. t) Y
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
/ \5 F) x' t6 g3 N    if ~mod(i,100)
7 i' P  I! j4 f, g        clc;6 }9 b( o3 @: [5 ]$ b, G
        fprintf('%d generations completed\n',i);# S6 F4 a8 m5 B
    end
% X" K% z3 H3 ], d' Z5 Q9 U0 Aend
7 Q$ d% w2 s9 d5 r& w( s. L' f% {" p& L5 @2 K: E
if M == 2
) \* B! l4 c0 H    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');7 L8 c* I$ l, X5 t' L( s
    xlabel('f_1'); ylabel('f_2');! c2 d) N. }0 M3 z+ v2 ~
    title('Pareto Optimal Front');
0 e% p2 t' R6 G: x# z$ n2 `elseif M == 3
6 k0 {* c( g, l. Y    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');/ ?( r% ?; T" G3 S& f& A2 Y  d$ f6 \1 h
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');7 b' V: E# Y) o& Q0 F9 F
    title('Pareto Optimal SuRFace');
3 P6 ~8 B# p2 k" ]5 m+ Rend4 X. h6 @% x9 F! V& X& q+ K2 ^( b

2 M, ]( F% o8 l, _8 {
  B- [7 I: h/ @0 i4 {" `②initialize_variables.m4 B2 w) T% ?6 `3 J# k4 g- G4 q' A
( S% k# `5 f9 Q* m; ~$ I
function f = initialize_variables(N, M, V, min_range, max_range)
: g' L2 j& S8 M, Bmin = min_range;9 f8 b  W, Y! u: h
max = max_range;
  Z* R7 i, p6 O: GK = M + V;% ]6 a0 O- U4 f. `3 ^7 G4 p1 |
for i = 1 : N
% {4 C7 Y# g3 F* k4 f1 T    for j = 1 : V
- Q. F* l( T" x* u; w& O8 ^        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
9 }) ^; T" t2 v# j- ]' Q% }3 X    end
$ H5 u1 S- C4 j# W6 d& f3 V    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);  b. O/ ?& V5 J6 t( ~' B# c" v3 _
end% y9 r" ~$ `" Y& S! e6 T4 }/ f

5 Z. P' z0 b$ l% |2 _
0 {& ~: _, n6 B5 K8 n# P③non_domination_sort_mod.m* l8 o1 p9 V; Z" m/ q5 y5 A1 U' ^3 V
; @, I9 R3 w& i! }6 u
function f = non_domination_sort_mod(x, M, V)/ k0 R* G$ c* `" u* Z3 S3 a3 J
[N, ~] = size(x);
+ s. f4 |: I# A  L3 j8 Bclear m
2 R% @8 n! J  b/ [2 H. K8 j9 pfront = 1;9 A" u% y/ X+ h3 f; y
F(front).f = [];
8 R. {+ G0 k7 tindividual = [];$ M" V$ G/ [2 f$ t' }$ x

! D" c9 c+ N! P7 h) g9 tfor i = 1 : N
5 j: g0 V3 V# q8 S( x# K5 d: _- X& W    individual(i).n = 0;
( K7 G& W( h) L5 `+ _( ^9 G    individual(i).p = [];2 h; o; T8 \; p/ `% d
    for j = 1 : N* c- c# d; i8 [. q' y4 }) f+ J1 V
        dom_less = 0;0 B/ M7 k5 r( J' O3 ], d2 O
        dom_equal = 0;2 q+ r! ?: \4 c! c+ H
        dom_more = 0;
7 Q% k, Z4 m+ e+ g4 G: n- B        for k = 1 : M  X! d+ n6 Z' f
            if (x(i,V + k) < x(j,V + k))
( g" j* L  N7 f% Q9 J1 P                dom_less = dom_less + 1;
! ?' p7 j5 e* t& g) y7 [            elseif (x(i,V + k) == x(j,V + k))
, m  a  P  ?1 S7 P% f0 D                dom_equal = dom_equal + 1;
, H/ p' K, D9 h" i# J7 Z7 T            else
# q! x8 ]$ w1 p, G5 {% b                dom_more = dom_more + 1;" |5 C! ^- V$ \( C! z* x
            end
& Y6 f% N( q& [3 J% C) W/ r1 {% N        end; g2 i, T# [6 e- O
        if dom_less == 0 && dom_equal ~= M# P4 k: D& g, k8 Q% N
            individual(i).n = individual(i).n + 1;
" n2 j7 j2 k7 _        elseif dom_more == 0 && dom_equal ~= M
$ s* b- A* u. b, l; A: w2 D: Y            individual(i).p = [individual(i).p j];* ~& B/ I: q" Y- M$ A
        end
& k! A# y3 }1 s" q/ O    end   5 i: R& W; R8 R! |% _
    if individual(i).n == 0
5 Z! D' Z' I" e' K) B- p# H        x(i,M + V + 1) = 1;) g; Q) }( Y' o9 D
        F(front).f = [F(front).f i];
" L) [$ y. r5 F- z3 @; p8 O$ i$ s    end& ~" {* `, l9 @+ J' |8 ]
end  l+ K& K1 ~% ?- M/ W8 c0 R+ R$ o0 ^
3 u1 S0 h/ S% b$ V
while ~isempty(F(front).f), @7 Q  j9 \1 K% M9 a
   Q = [];
9 x2 |5 v$ r3 B# _" u   for i = 1 : length(F(front).f)
& J5 ^: S7 p2 I. y       if ~isempty(individual(F(front).f(i)).p)
+ m3 `/ a  h7 X7 ?/ N            for j = 1 : length(individual(F(front).f(i)).p)
. R. r+ c7 T) U; W- ^                individual(individual(F(front).f(i)).p(j)).n = ...3 c9 P% I& h3 ^
                    individual(individual(F(front).f(i)).p(j)).n - 1;- h2 b# e! R: |2 r4 ?
                if individual(individual(F(front).f(i)).p(j)).n == 0, z/ Y2 O: M- u# I
                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...
# h6 i! r, b* G) R" n5 Q                        front + 1;
2 i) i5 {& }3 s                    Q = [Q individual(F(front).f(i)).p(j)];/ I5 [' I. ~$ r8 B
                end4 ~0 {1 I" [; {, S' z' j
            end7 Q, d& @' ^* o/ f
       end
! }9 F& Y' ?: h5 J0 j   end
- D0 b) Q0 B$ e( t' Y) ~; E# A- o   front =  front + 1;
+ y& t; c. \) }; X   F(front).f = Q;
& ?0 Z3 N5 E% j/ Cend5 O% y+ [% R- |
9 F; \5 D; q7 t7 R" V/ e
[temp,index_of_fronts] = sort(x(:,M + V + 1));. ^( T' P% s7 X( {! s' `+ P1 d
for i = 1 : length(index_of_fronts)- {5 D, v* R" ?! {1 f% \
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
! Y, F: V% U! h# T4 y% ^end6 G3 g6 l9 J. T
current_index = 0;( x/ I, \! {6 V- ]( A: ^

  D( N- k% L- N" O: V! y%% Crowding distance( \/ L: w$ w1 H) V1 ^( b/ k

6 q: H: k8 [& d! u8 t' Xfor front = 1 : (length(F) - 1)  E  v3 H$ Z' h1 ?0 ?. t
    distance = 0;
+ t& Z5 C8 `; r$ U# i6 E- A- R& c7 T2 R& v    y = [];& Y/ O( o" |) u$ v7 G
    previous_index = current_index + 1;6 {( f7 y" g) j+ }9 |
    for i = 1 : length(F(front).f)* v0 b: N1 s7 t2 ]5 p" G: A% p8 E. A
        y(i,:) = sorted_based_on_front(current_index + i,:);/ P- Z5 [1 r' ?" W/ Z6 D  @0 \- g
    end
. R, F6 g; Q2 _& @, W    current_index = current_index + i;  a. A( W' o$ {  X! h* B
    sorted_based_on_objective = [];( ^# Z7 I" e7 Y0 @7 y+ D
    for i = 1 : M
5 q" t% b# X) `& m        [sorted_based_on_objective, index_of_objectives] = ...
  r# F* |/ \; o) w1 K8 M; ^4 e* X            sort(y(:,V + i));( e  c0 z! r' q# b) D' O( S
        sorted_based_on_objective = [];* e8 z+ @- W% S( \
        for j = 1 : length(index_of_objectives)
' |7 V' T8 g' [6 `! Q* L            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
2 {2 z! @* F. Y! e        end, @$ Q+ C+ ?: G& @
        f_max = ...2 {1 b$ G- f. s( `7 {, ~5 m
            sorted_based_on_objective(length(index_of_objectives), V + i);
' W2 x" d/ k/ R5 k5 q        f_min = sorted_based_on_objective(1, V + i);
, m5 l1 e1 n& i& p9 c; |" h        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...4 c' t0 Y" T/ J7 @% c1 M# E. ?
            = Inf;/ y0 R7 C8 R7 R  b' J
        y(index_of_objectives(1),M + V + 1 + i) = Inf;4 M8 F- b2 ]" t2 ~7 ]+ B! \% B
         for j = 2 : length(index_of_objectives) - 1
( p  K+ J( \! _3 U' y            next_obj  = sorted_based_on_objective(j + 1,V + i);
  M$ e- y, W4 F3 E9 s* H- d            previous_obj  = sorted_based_on_objective(j - 1,V + i);! S4 y* `/ d, H# Q6 ?9 j# ~
            if (f_max - f_min == 0)/ {8 s" C" ^7 W% H: O+ c: l  f
                y(index_of_objectives(j),M + V + 1 + i) = Inf;0 P2 H, T7 h) @7 F) j& V# {8 y
            else
% w  t% w/ r+ ~& B  s, T% Z                y(index_of_objectives(j),M + V + 1 + i) = ...
. {) k  x/ p2 k1 h; U: k                     (next_obj - previous_obj)/(f_max - f_min);
' \% M, w* x6 X1 g            end5 A0 H* E1 \+ P* n( f/ y
         end
7 D: p1 c( C$ u# n    end7 W) @* T$ ?4 Z9 @
    distance = [];/ y& |1 _+ T" l2 Y( `* q
    distance(:,1) = zeros(length(F(front).f),1);1 M: Y0 P0 a" P& W8 F
    for i = 1 : M+ ~$ W! j7 z, W( K9 ?- R+ Z* r, ~
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);: |" l" m8 U" F+ N8 S+ w* r+ G
    end
2 ?: N/ c7 W; b6 G) F8 n    y(:,M + V + 2) = distance;3 q' e! A: [; K0 v/ A* w; q
    y = y(:,1 : M + V + 2);
7 P8 N# D9 I/ l6 }    z(previous_index:current_index,:) = y;
# X/ E' q3 S" V) M. {end& q/ q! Y' e' ~
f = z();
/ S4 t* V$ w* {/ [# g
0 I& }! b/ `/ }% J2 Q$ _( V* o7 n% a* U! h7 O* i/ f& }$ A
④tournament_selection.m3 b1 M3 x8 F( |
& K4 j1 N3 M" t  ]
function f = tournament_selection(chromosome, pool_size, tour_size)8 \/ c& s, B& h% h
[pop, variables] = size(chromosome);
& ~5 g- Z% F* |$ y! t1 Irank = variables - 1;
0 S. l5 ^. c: g) k2 Y- B: f/ cdistance = variables;# V$ d/ y) V: l3 m
for i = 1 : pool_size7 q& a: R  P$ k1 c: |% |
    for j = 1 : tour_size
3 [7 r5 s1 ~. Z" g        candidate(j) = round(pop*rand(1));% W9 D1 J2 U' O, \
        if candidate(j) == 0
3 ~/ @8 J! F7 g. ^* q            candidate(j) = 1;
* v5 }$ k% u1 W/ V. z  ~0 i        end
  H) y5 i8 R5 f        if j > 1
# m; x# Q: E8 J4 y. p% a& Z- ]+ ~            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
0 i6 L: o8 X4 q3 l6 W* d                candidate(j) = round(pop*rand(1));
' b# j  P. Q3 F& e' _  V( a, D                if candidate(j) == 08 L7 ^# L$ f) s+ q' M5 m, Y
                    candidate(j) = 1;: t& l( w& m$ ~+ I( Z5 ], T
                end8 B; e6 U+ q: z. {/ Z
            end9 p' H( b% s5 O$ a$ |0 i
        end
' A% S, ^# X- b3 |5 I3 s    end* O9 [+ O* y* z/ `- `% L( V8 e. d
    for j = 1 : tour_size8 i9 X$ ~1 H7 W6 {3 n1 V* e0 Y
        c_obj_rank(j) = chromosome(candidate(j),rank);
0 U, }+ b$ |& |        c_obj_distance(j) = chromosome(candidate(j),distance);
7 `2 O8 N' @% t8 ]  w; h' n+ q; j    end- ~2 [+ X3 Z% t! R
    min_candidate = ...8 o, F, |% \: p7 A
        find(c_obj_rank == min(c_obj_rank));9 j4 u" c) b8 V, ]8 P5 \& u
    if length(min_candidate) ~= 1* t! T3 m9 o2 {2 f
        max_candidate = ...8 A9 I- R4 g$ Q' S
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));8 u4 U- A4 ~. c& `& x
        if length(max_candidate) ~= 18 t6 y6 N7 i, H# \: d0 R" s- e
            max_candidate = max_candidate(1);% b7 a2 I2 @9 B2 y- n; f
        end% _5 R; Q5 b0 L; }" d
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
. b+ @3 a7 @  ^2 m# B    else( e) F7 V" f2 h- ]0 _
        f(i,:) = chromosome(candidate(min_candidate(1)),:);
7 d) z5 |/ t% A5 N8 y  J    end
$ p( Q0 f: ~! F$ q; wend6 E3 ?% X4 X$ f, p$ j
5 i3 {% O; x9 G5 n
5 o) N. _5 f% b- s
⑤genetic_operator.m
1 e$ k0 T8 U& S7 ^; S4 b: @% a  `
1 ^: s( H, s% |' T  x) j% I9 afunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
0 T3 `8 k1 j5 Z+ c, z: ][N,m] = size(parent_chromosome);, ?3 P7 ^2 T" ?0 q2 F
6 V0 D( F; U1 N+ E; ]4 X
clear m; s9 K9 B4 Y( f
p = 1;+ L3 Z/ ^. z7 M6 i
was_crossover = 0;, m( \+ h3 K7 N* y+ G
was_mutation = 0;
  {' Z% @/ C9 Y: r9 Q' J5 c4 V* t
: V! `0 m% |7 g
0 ~+ Y4 [8 E) i; w; Gfor i = 1 : N
/ ]% p6 e9 m/ o: A% c    % With 90 % probability perform crossover2 l( K- f0 _4 [6 B8 n0 n( p/ D7 O0 \
    if rand(1) < 0.9' Z/ p1 O8 X% z
        % Initialize the children to be null vector.: s0 Y  p& L' g4 ?, Z4 }
        child_1 = [];
7 N0 |4 M" Q" j3 S0 _6 x        child_2 = [];# L4 d( H' S9 p
        % Select the first parent8 j! ~; G) y  ~' e
        parent_1 = round(N*rand(1));
' k  h0 \0 T0 P$ ?8 \& k4 g        if parent_1 < 1; z, i0 A- N7 V& A0 _
            parent_1 = 1;7 {* j  ]( N2 z* m( C
        end' u: f8 v  w  b- v. E
        % Select the second parent
1 m& p9 `3 x+ I        parent_2 = round(N*rand(1));7 J$ p, ~3 a/ P
        if parent_2 < 1; s( E  C$ T$ Q: S
            parent_2 = 1;$ L  I6 r* P' g( X0 b
        end. l3 t' [6 J6 L4 |" R5 i4 D
        % Make sure both the parents are not the same.
7 W6 P, K5 S  ~2 V. s5 J6 O& }        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))6 B+ P& c3 ^+ x$ c
            parent_2 = round(N*rand(1));+ ~# e: r: o2 Y; E3 l5 j; a
            if parent_2 < 1
6 G% m, O7 W& w2 x( z" X                parent_2 = 1;9 }, H. z  v0 M: y1 P
            end
! {% Z; ~, @' F& W* s- B& R        end. P# U6 M7 J2 N4 f- x8 N$ U5 g0 y
        % Get the chromosome information for each randomnly selected
7 h+ K4 Z! {  M        % parents5 J7 j2 H( X% s6 B% M
        parent_1 = parent_chromosome(parent_1,:);
1 w# C. c) ]  }7 k  c        parent_2 = parent_chromosome(parent_2,:);9 Q2 s+ Z+ x, E
        % Perform corssover for each decision variable in the chromosome.
. y2 E* ?: T$ L! y+ u        for j = 1 : V. L4 ?6 S  `2 Y8 R, Q
            % SBX (Simulated Binary Crossover).
4 U( i: D% g3 @4 Z. D* d: I2 S6 M9 T            % For more information about SBX refer the enclosed pdf file.3 _! a$ y- l# o$ P+ u( c
            % Generate a random number& j7 O6 R! Y* S2 G$ [
            u(j) = rand(1);
# k5 k9 S' \& f. G* h) m9 B% _            if u(j) <= 0.53 Z- I* @+ [# F) y
                bq(j) = (2*u(j))^(1/(mu+1));
# l( O$ _* B/ n* g            else
4 t' R, _7 S2 G                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
) S- x* J, @; O            end
1 D" c( G& b. m: \& u            % Generate the jth element of first child5 g  a2 P$ C/ L# i3 P
            child_1(j) = ...! ?, R& z; n+ l/ ]$ G8 V
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
$ W9 T; x0 M) `4 ?" f  Q+ o            % Generate the jth element of second child
& j4 T  Y" G! ?  q% Z4 B, C$ w; K            child_2(j) = ...
+ R: x# u- j; Y0 `/ B  u& Q' t7 e( y5 h                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));( c/ t; _' J, m, w
            % Make sure that the generated element is within the specified
) H- @1 `; C6 N- H            % decision space else set it to the appropriate extrema.
3 y' Q/ x. v1 \/ F0 b( F2 Z8 X            if child_1(j) > u_limit(j)
$ F3 y1 A! n; @2 u                child_1(j) = u_limit(j);1 |* A# n5 Y0 m9 f; y
            elseif child_1(j) < l_limit(j)8 i0 C+ k  U8 m7 e
                child_1(j) = l_limit(j);. l6 k2 k; o6 e5 X6 I& r
            end
6 D2 t0 |! N/ B) s) n. n% v3 u            if child_2(j) > u_limit(j)9 G# a6 |- m/ ~- U
                child_2(j) = u_limit(j);
" C' V8 H/ }& P% Y! F( Q) g            elseif child_2(j) < l_limit(j)# R# S% |! o4 A9 A, G/ U
                child_2(j) = l_limit(j);
' g7 J# {/ G+ K' m! I! t6 m            end
9 U' g) k7 Q, Q4 R- W  V        end6 f9 D3 z2 }* Y( Z: S! {6 p+ Z, S; r! v
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
% V* p& N8 N& S. T* v        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
4 h- z" b% Y9 g& P& a5 x. y: M) U- _        was_crossover = 1;
9 z" Y. R$ W* D3 s( H        was_mutation = 0;6 ]8 g, S" e5 X4 O
    % With 10 % probability perform mutation. Mutation is based on
, \! O8 u& J2 u  s    % polynomial mutation.
6 X. g% Q. a: M- B3 m    else/ D' @+ z4 e6 A, Z* e
        % Select at random the parent.
# P* B2 w% s# R  L: ~+ {        parent_3 = round(N*rand(1));4 Q- ~5 l: O/ W
        if parent_3 < 1
, F0 z4 K7 f+ g' c( ]. P            parent_3 = 1;$ |: W8 ]- h6 H) u- t2 a( f! ^
        end8 ]6 H  E' c* X8 x5 k) w7 m! S6 w
        % Get the chromosome information for the randomnly selected parent.$ L" s1 g* I- E4 |9 U- E/ R5 x6 u6 I
        child_3 = parent_chromosome(parent_3,:);* z0 k! G( W8 K" x7 ?7 s+ {
        % Perform mutation on eact element of the selected parent.
# s2 T0 G; i- g( B9 t        for j = 1 : V
: X7 f7 Y# r4 d. T# b+ q           r(j) = rand(1);8 W5 k: ?1 \. \' e4 o/ E
           if r(j) < 0.5
7 O/ [5 C" z) O: [$ \               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
8 i" |; s( A4 I; L           else
2 C: x- e* j3 B+ E/ G               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
2 n) S- F' `3 ]  t& |/ U4 J           end; \$ s9 y# U3 c/ p) x5 ?5 e2 }
           % Generate the corresponding child element.
: O: e$ N/ e  |) U1 {* K, m* T8 E7 O, d           child_3(j) = child_3(j) + delta(j);
" N/ p9 ^5 l0 M& L( b: A& W. l+ z           % Make sure that the generated element is within the decision
9 t5 e' f, m$ p+ k/ N' M( s           % space., {: c: e: n( v% g. v
           if child_3(j) > u_limit(j)2 e0 n6 V: S3 N4 J7 x( e6 e
               child_3(j) = u_limit(j);
& @$ i% K7 V- J6 x3 d2 S  U8 l' \           elseif child_3(j) < l_limit(j)$ \3 {' O* A$ x* v6 [
               child_3(j) = l_limit(j);! c; a& K8 v( w# o5 P2 N
           end
0 T; y: t0 I5 r        end
1 g. H5 @' D! U! p2 G        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
, J( F* ~" m7 M; Q        % Set the mutation flag# [. [( p1 i9 ?0 [! ~! A+ l& R
        was_mutation = 1;7 ~6 G# q2 H% [! y$ U
        was_crossover = 0;6 ]1 X8 V/ j4 P+ p3 K
    end1 U" D1 p* Q4 ~" @+ d1 D, k
    if was_crossover" z, k' a& V8 P* X7 Y; T
        child(p,:) = child_1;. A& h: t. E( ?1 o& }- p2 P
        child(p+1,:) = child_2;4 l0 J1 S) P$ E
        was_cossover = 0;/ s( B( v% W" S- e9 H
        p = p + 2;
7 O; {3 k, M$ `: ?8 p    elseif was_mutation7 X. q  U" g% ?- Z* e
        child(p,:) = child_3(1,1 : M + V);$ Q: L' b+ c" R! B3 v
        was_mutation = 0;0 z; R* a3 X, R) w8 s) R
        p = p + 1;0 A# N' X8 o$ V! ]( ?+ c, f/ g
    end
% c' [6 K' M) P8 ~. ?end- ]% k! A5 I2 a+ |6 O& @& v% B
f = child;- [4 D# M5 g6 k; y4 K
% N; u6 t: E9 L! i: {% ]
. U4 ^/ f" c  j/ m" g1 X" j2 u! ?& C
⑥replace_chromosome.m8 M! ~9 ]2 c' Z9 X5 ^
# _; h. @2 I# }9 A
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)
0 x+ \4 F0 m+ e
5 @, z' w; o, g+ h5 Y) }& d6 A/ g
+ l+ S* p0 G: h# D7 R* u[N, m] = size(intermediate_chromosome);
  D9 F, _" k6 e% i: Q% ^$ d! ~8 d* K" n- ^' L
% Get the index for the population sort based on the rank$ Q; g% Y/ j0 j( c$ [; T5 Z( D2 R9 U( ?
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
2 {/ _  L8 `4 j1 d$ y, z* g- p7 F1 o9 B0 L7 k# U( F, L2 R4 d' m
clear temp m6 s1 z6 B3 i3 b4 j
/ C) O' D6 V4 v( O0 m2 R
% Now sort the individuals based on the index
& \/ t; `# M. c! S) tfor i = 1 : N
' j# l9 x# p7 V/ i$ W    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);
) r8 ?. V9 O  d; C7 n6 lend: N) [+ Z* E: k0 K# T
% Z8 x7 N9 o1 [3 J, Y* Q
% Find the maximum rank in the current population& l$ J9 s: [8 W4 e& @
max_rank = max(intermediate_chromosome(:,M + V + 1));
$ {) C, X, R/ T9 U" b- v5 x, D" b8 W! ~! ~
% Start adding each front based on rank and crowing distance until the
$ ~. M" i! c6 N( w6 O% whole population is filled.
; z( B  x( e5 \, c0 ?* t, z2 n! ]previous_index = 0;8 L  s# q  }  k3 q& g. S
for i = 1 : max_rank
7 O: D; a2 V) J( n% Q! [    % Get the index for current rank i.e the last the last element in the
0 I% D- _; \4 k, m    % sorted_chromosome with rank i. * d0 f2 g. f- t, d. |
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
% b: h8 R' }& e- @. O" }; g    % Check to see if the population is filled if all the individuals with% g- J5 S4 x# n5 y
    % rank i is added to the population. : }, s  q7 T6 G0 o1 @  S+ I" l
    if current_index > pop
% [8 m  d9 N; |8 `, e% l' E  F7 W+ ^7 O        % If so then find the number of individuals with in with current) M! V8 M3 O# x. p% b- j3 \
        % rank i.
9 X( j+ B$ f8 o        remaining = pop - previous_index;
2 U' i; @) c* I1 p& N/ n5 s: n        % Get information about the individuals in the current rank i.
' F; p/ r+ }( \: {        temp_pop = ...
! a4 ]) C: F/ a) K6 P5 S            sorted_chromosome(previous_index + 1 : current_index, :);) D. U' y, R% }- [$ _4 Y8 \
        % Sort the individuals with rank i in the descending order based on
# L) o! u2 Z: B1 Q& y- }7 o        % the crowding distance.1 [! n/ I  |4 t) k
        [temp_sort,temp_sort_index] = ...! u; P4 {1 c$ ^( q1 x' L* F( g
            sort(temp_pop(:, M + V + 2),'descend');4 [6 w% A( ?6 U. A/ {+ j( N- \
        % Start filling individuals into the population in descending order
3 L7 h3 F/ L7 z# K( Z% J6 {        % until the population is filled.
  W( F1 m4 @( J& L' [" C' D# _+ V        for j = 1 : remaining( Q, e" n2 S) P, o
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);4 r$ U, v2 i1 C* u7 b" O7 z* L: N
        end
/ t# K. \# G4 P) p        return;
3 S; s2 T- c5 {, }7 K    elseif current_index < pop
$ Q4 j, {* R8 h' \! h        % Add all the individuals with rank i into the population.9 D# K6 _  \! `4 c0 r# y# \
        f(previous_index + 1 : current_index, :) = ...1 D; h7 b! q% l$ r; [, J
            sorted_chromosome(previous_index + 1 : current_index, :);
- a% g8 ~: z7 l7 \    else
1 m/ u0 |) Y3 \3 y) T0 ]        % Add all the individuals with rank i into the population.
3 A+ y9 c; R9 H- d        f(previous_index + 1 : current_index, :) = ..., _9 S4 e4 o1 I2 S
            sorted_chromosome(previous_index + 1 : current_index, :);
3 w: f5 H' q; m1 g3 B; N0 a        return;
; r+ h: G& d% v+ }& T: F) E    end
/ X7 @5 S% ?0 S# V1 W    % Get the index for the last added individual., _) _2 Y- Q0 n7 O) s/ E
    previous_index = current_index;
7 B7 w0 u9 B2 K) lend
5 [/ C3 H0 \! G) \- n5 _. {
! n4 q  p- b: E  _( O
% j( |$ A6 V! \- O; q' D5 q⑦自定义评价函数(我选用的ZDT1函数)
0 O4 B/ Y3 x) n9 B2 M8 _, C- r) ]# u2 D( [* P2 N
function f = evaluate_objective(x, M, V)
! t/ I8 u7 A+ a; _" K! if = [];9 r; V. D' t5 q0 i  X4 y
f(1) = x(1);# w% W9 T1 S, C. `
g = 1;6 U9 ]  K% x9 \) H- \! l, |9 l
sum = 0;# o" Y- p* [% U  C
for i = 1:V" o9 L8 W/ Z+ o6 J8 c6 o7 q4 r1 j
    sum = sum + x(i);
/ t3 m3 b: }( K* U0 Y9 h$ k* Yend
3 u5 P+ s& P5 _sum = sum + 9*(sum / (V-1));
! T5 o8 V6 d# h7 r8 Ag = g + sum;
! Q5 g7 t9 r! \$ Y& |" w& R& Jf(2) = g * (1 - sqrt(x(1) / g));0 m  x7 e) Y6 V' h  ~1 Z
end, x) h) O: n" T. g/ b8 c$ \( v
, W6 F! |  Q9 G8 ^# y+ W* ?
' X4 H, ^/ W! ^6 \  \3 B
500个种群运行500代的结果:
/ v8 `5 F+ L; a1 H 6 ^; M: l- F) @  x+ g" S4 M3 v6 L% F
7 `, P7 X; N3 A$ h* K

8 q, N/ f) ^7 Q% `1 ~" ]! P# W& O* H% }# {3 t3 j
+ m, w) N6 K) ^  s

) }  M( A* w- G4 o6 Y. u

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 11:52 , Processed in 0.187500 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表