|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
( e* e4 z9 A4 w b9 j. G函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
% T' T3 H0 k5 r, `. y E/ j
2 o/ P9 v+ w8 v- O- g4 i; xfunction x=besselzero(n,k,kind)4 c7 r% o4 K: s; @# v0 _
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0 }+ W: _/ }% k B5 x
%" b+ |' R4 [6 O9 k! E2 F. I
% besselzero.m
: a: m" `2 B3 F- v1 C$ N%
" C: A1 f& h& A1 Q% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)
8 V O3 R- p0 e+ E8 g. N2 j. j% using Halley's method.8 G4 m! A6 w) U3 X
%
' M7 `- a1 s, K6 h: m! n/ P. M% Written by: Greg von Winckel - 01/25/05
8 p, L; u5 V6 [. `% Contact: gregvw(at)chtm(dot)unm(dot)edu
9 O3 H# H- }% Z _%% I/ r. |5 q( Z" S4 K% F# f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% [7 _& q$ e' {* j" }k3=3*k;
- p+ H2 [0 c8 s+ J0 Z# ^x=zeros(k3,1);" k6 m" e1 g" F, u& z: _7 `% i
for j=1:k3
- B) _. K7 Z5 P. f4 U9 z% e
5 N$ S( U5 x+ i- ?& K- r; t5 @ % Initial guess of zeros2 d; L3 z5 ^4 X) X2 z( M+ u
x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;9 f' p1 z7 p0 x- |8 L3 ^" X; b/ O6 _
* z0 {; ~, e$ O) s % Do Halley's method3 i7 ^$ ~; T4 S7 ]. o( M
x(j)=findzero(n,x0,kind);
4 _( E- F0 k9 O6 y if x(j)==inf
! n! l/ F. e3 c error('Bad guess.'); u4 D" \% r1 S
end
4 Z. J% H1 s! g4 b 0 n6 B: [% y; | o* f/ S
end+ K6 G& Q. C1 z& v/ ?/ Q% p
x=sort(x);
/ f/ m' W# P: C+ E1 ]- Jdx=[1;abs(diff(x))];
/ F6 t" Q1 @, o$ Q9 X$ d! V( k5 A" qx=x(dx>1e-8);4 G$ S5 z& H) d+ k8 ^1 K
x=x(1:k);# k' _: l! _1 b+ y- I' T. `
function x=findzero(n,x0,kind)
$ O4 _2 y- U: e2 kn1=n+1; n2=n*n;
& g3 \) g2 m/ `5 `* d/ r, u2 u9 W7 k% Tolerance5 H. A7 i- I3 x5 T4 f5 Q; T7 b
tol=1e-12;
- N* b3 A1 I7 J) L3 i% Maximum number of times to iterate
; H( X3 @# ]1 y7 uMAXIT=100;* D) z" L3 z) R/ p& n# ?" ^
% Initial error
7 h* N: ^: R' I7 aerr=1;
6 b h% `- M, _5 a* E9 Fiter=0;1 f/ K* P- u7 H4 R
while abs(err)>tol & iter<MAXIT
; u) K4 X! x( u; @ K, @" N, s$ C9 _% ^
( i( b& l8 `1 s switch kind
8 y; w, m0 C3 a5 A; p+ Q) ]5 ` case 12 y+ x/ T$ m: Z4 M0 @$ D! g- V
a=besselj(n,x0);
+ A+ Q' w7 O! k7 I b=besselj(n1,x0);
* Q O6 B! o) ?( x$ ` case 2* ]5 Y+ F/ s8 }$ [! _6 X2 ~" h1 k
a=bessely(n,x0);8 b1 O3 t& z8 c6 H8 h: F
b=bessely(n1,x0);
% C) U" e: I9 N) y0 |/ F) a end+ d4 q" s, S' f7 Y' q) z
0 u b* O, ~0 ]- X# m, y x02=x0*x0;
- i$ j( ?5 y5 W; G! z& E- w9 r % Y9 F7 u5 E1 }) r% n
err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);( j3 n3 n' Z0 U1 {& m) V
2 g' X7 X+ M1 o0 {* b* `# X
x=x0-err;! n& k9 F' t# Q( `" Q2 [. d% D
x0=x;
5 E5 ~: O1 D! }: z iter=iter+1;8 o+ _# J0 p$ f" w k8 i! M
! Z: g, a7 z& o' \1 o' p ?end3 `+ W1 G# E3 R2 X) Z
if iter>MAXIT-1" k2 J/ x {' d% U2 {
warning('Failed to converge to within tolerance. ',.... V d4 q- N8 \ H5 H. O
'Try a different initial guess');& s5 c2 N$ \) S4 g3 s
x=inf; 8 T) l% P3 T% I
end
4 }# N) N8 y* A, Q2 I2 H7 R; h3 }- D# ^" [3 F$ k
|
|