|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 h9 R% y/ ~; N6 }. I/ Q) l
上篇我们讨论了:MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)
6 T1 g3 i5 M4 l% K2 E( H4 I
6 @3 H( s4 z- a; J) _, K可是还是觉得不过瘾,还有下面的情况需要比对。于是就有了这篇。
4 b8 T4 L0 B3 x; l# g/ p
0 ~5 N2 r( l9 k+ O9 x8 {8 S: G案例:" X' E/ A7 x7 j6 s% [8 K7 s1 I
! {- |5 E1 J( f6 C' T/ U3 B9 Y
* X8 p, g" u% ^1 G
8 P( U/ f2 ?* |: \% }想要基于有限样本数来确定他的频谱。
- p8 z% _; X3 p/ J% c$ ]
+ _, j, z( i6 @ h8 I下面我们分如下几种情况来分别讨论:
8 B! b3 `7 ^8 R( [, j* n5 \+ J8 y/ J
a. 求出并画出
的DTFT;
! o# i( Y" P% p5 S7 J$ b( s) F; R* E
b. 求出并画出
的DTFT;8 P2 o8 w& l C% m8 `
$ p3 y6 K0 Q/ t. D4 q; t- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,2,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,2,2);
- % stem(w1/pi,magY1);
- % title('DFT of x(n) in [0,9]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- % hold on
- plot(w/pi,magX);
- % hold off
- subplot(2,2,3)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,2,4);
- % stem(w1/pi,magXk);
- % title('DFT of x(n) in [0,99]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
- . i3 n+ S) v. K% L" @- i0 d5 Q# K8 ]) x
! e4 q3 h* `& @# K/ f+ M# m
' r1 Q$ |" n6 O. r2 Z5 G t: J& `
) W3 U& _8 I# P2 H
& Y& L+ ?7 s( G, s6 I6 S可见,b问这种情况,拥有x(n)的更多数据,所以得到的DTFT更加的准确,正如我们所料,频谱在w = 0.48pi以及0.52pi处取得峰值。而a问中的图就看不出这种关系,因为获得序列数据太少,已经严重影响到了频谱的形状。# `5 ]4 p. G6 @
1 u o/ n3 M, G {
9 H h" |, d- j7 s
+ n' a& u; `- v8 l$ A) }3 J! |' e- H: B4 T, n. w+ g) ~
* `( M4 [4 m3 L" | {( O/ g; Z
# I! u/ f: w. a% x
|
|