找回密码
 注册
关于网站域名变更的通知
查看: 586|回复: 1
打印 上一主题 下一主题

MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-12-9 11:11 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本)
2 C/ S: B0 \- O+ w5 Z; m; n
0 s% q: a" _. a- u: A6 _2 F
* N/ x2 y: f- ^- e% T6 B1 J2 R% W上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)- a2 k3 @* G* ]+ ~; k' }
那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
! l; z# b  y  h- k& x2 |
6 I! q1 y% ^: @( e这篇就是为此而写。
( q6 `4 F8 y( j6 P! K$ l
$ K" Q6 |2 x8 L2 }" a案例:
: O6 N7 `5 k! H. p& X9 i4 D" Z3 y3 K' P# U3 ^& r; _) N: z0 P

- o( P' R6 Z% J" C! C
5 Z4 Y. z, B; l: O/ @/ i/ t想要基于有限样本数来确定他的频谱。8 l9 @% h. R% S- j# i0 d
# j( o7 F, Q- N% @- u
下面我们分如下几种情况来分别讨论:
/ f& j) g- o: E5 b6 W
/ P& {( H7 V6 b, r6 Wa. 求出并画出   ,N = 10 的DFT以及DTFT;
/ a6 ~7 V6 a  |- ^: o
' v6 V; x4 \; q( {# Q$ y; kb. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;$ g" R% ^% Z$ b! P0 c
3 A" P/ n6 N' L
c.求出并画出   ,N = 100 的DFT以及DTFT;- y2 x: c$ u2 l" v" m* L
: ?. T! w8 U. X% a9 T. o
d.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;
% l  v" q. s$ U; G" Q) ^$ B: |6 F  Y% {- g. ]) s! _  q
e. 比较c和d这两个序列的序列的DFT以及DTFT的异同。0 w1 L4 a  q& y3 v4 q! q
! Z- F6 q! z' R. S# R
那就干呗!. z( r0 B3 k: u: m
1 l7 Q! U2 X/ [) M4 |8 H
题解:8 `5 n7 Z! G$ m- w: Q
8 `' `4 Q6 Z( Z
a." n! m9 F, u2 n; F

: ^6 U' x1 _* z
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • n1 = 0:9;
  • y1 = x(1:10);
  • subplot(2,1,1)
  • stem(n1,y1);
  • title('signal x(n), 0 <= n <= 9');
  • xlabel('n');ylabel('x(n) over n in [0,9]');
  • Y1 = dft(y1,10);
  • magY1 = abs(Y1);
  • k1 = 0:1:9;
  • N = 10;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magY1);
  • title('DFT of x(n) in [0,9]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = y1*exp(-j*n1'*w);
  • magX = abs(X);
  • hold on
  • plot(w/pi,magX);
  • hold off% ^5 ]- R4 @) _( U
      ! o# F3 a. k$ v  u
4 j# e7 |, }1 _" U& c1 c
" h! ]# h# Z# u7 |8 W$ U
b.
; q) M# }) {5 p, ]7 s2 Y6 l# B2 ]9 z7 _7 i% L+ ^
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % zero padding into N = 100
  • n1 = 0:99;
  • y1 = [x(1:10),zeros(1,90)];
  • subplot(2,1,1)
  • stem(n1,y1);
  • title('signal x(n), 0 <= n <= 99');
  • xlabel('n');ylabel('x(n) over n in [0,99]');
  • Y1 = dft(y1,100);
  • magY1 = abs(Y1);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magY1);
  • title('DFT of x(n) in [0,9]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = y1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • ) V( N1 V4 @% i7 y1 j
      
! t$ O5 H* s" ?1 t6 _ 3 l2 W0 W7 U" }+ p& r6 W, q- a

, r: O6 x6 P' h! z- j; k9 I3 A5 v8 Z6 z7 {/ n5 d+ J6 t
c.# Y) K" U3 @9 V# M/ K. U7 m; h

) }; q* r, k6 x1 T" o2 F0 l- M
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • subplot(2,1,1)
  • stem(n,x);
  • title('signal x(n), 0 <= n <= 99');
  • xlabel('n');ylabel('x(n) over n in [0,99]');
  • Xk = dft(x,100);
  • magXk = abs(Xk);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,99]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x*exp(-j*n'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • / s$ Q3 U4 w: Z/ N
      6 x( A- t5 x4 H# P7 r
* j& s( q% a. p5 L9 W! ?
7 n+ Z; \0 j5 x, y" A+ ~& H

4 G" U! V9 b% a- D* K( d  q& p太小了,放大看:
: |8 e8 Q' |' q/ g! w+ E/ s# z3 C4 k  O

, A! `2 H; x" i9 Y. {! f0 _1 _
$ J! ]5 H7 d6 u% E3 a- k- I4 e6 E " l" }- w9 h+ n0 a/ b

+ h- i, |+ K, }. b, Yd.
) X9 l& Z, l! z9 [5 P" X4 U) ~, [
* ~0 W1 N# N: P; b+ [: I' R8 \
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • %zero padding into N = 500
  • n1 = 0:499;
  • x1 = [x,zeros(1,400)];
  • subplot(2,1,1)
  • stem(n1,x1);
  • title('signal x(n), 0 <= n <= 499');
  • xlabel('n');ylabel('x(n) over n in [0,499]');
  • Xk = dft(x1,500);
  • magXk = abs(Xk);
  • k1 = 0:1:499;
  • N = 500;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • % stem(w1/pi,magXk);
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,499]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX,'r');
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off

  • " }& x9 a7 Q! y' p
       % H. S4 S& b, K: F5 C

, }% b( U* b9 B% b6 H, ] # ~' j- [+ ^9 b; Q2 c

+ A7 O; E& B4 H3 Xe.- T# |% @6 C! r* J
8 X1 E8 k! ]; N$ N4 n; M
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • subplot(2,1,1)
  • % stem(n,x);
  • % title('signal x(n), 0 <= n <= 99');
  • % xlabel('n');ylabel('x(n) over n in [0,99]');
  • Xk = dft(x,100);
  • magXk = abs(Xk);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,99]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x*exp(-j*n'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • % clc;clear;close all;
  • %
  • % n = 0:99;
  • % x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • %zero padding into N = 500
  • n1 = 0:499;
  • x1 = [x,zeros(1,400)];
  • subplot(2,1,2);
  • % subplot(2,1,1)
  • % stem(n1,x1);
  • % title('signal x(n), 0 <= n <= 499');
  • % xlabel('n');ylabel('x(n) over n in [0,499]');
  • Xk = dft(x1,500);
  • magXk = abs(Xk);
  • k1 = 0:1:499;
  • N = 500;
  • w1 = (2*pi/N)*k1;
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,499]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX,'r');
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
    ' ?. c5 }5 q5 N1 ~& ?( L5 ?' q2 ^
     
! C/ @8 J- Z$ V+ A 4 e0 X" \$ v' \+ \7 e

# F8 d, f* `# i- r4 Y% {6 }8 H7 d' H# c( f: ~
局部放大看:; u- I5 {: Z& H
3 X  ]+ _" ?+ u( X8 \; o
. s4 n1 q7 L7 b+ |4 t+ p
0 D* ]0 Q3 C$ Q4 W+ \/ P

1 c0 y! V% I/ N0 Z( Y5 s9 `3 ~9 ]+ r) m. W: {7 D: V# o' w+ j6 r) ?

: e, \3 k2 B0 a2 P' T# a! ^6 o
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 01:51 , Processed in 0.171875 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表