找回密码
 注册
关于网站域名变更的通知
查看: 296|回复: 1
打印 上一主题 下一主题

Signal.Detection.and.Estimation

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2016-11-8 13:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Contents
# h7 `7 j' ~- `# g4 VPreface xv: C0 T- P3 U, o! X1 t3 Y3 _
Acknowledgments xvii
, n% _2 x) h) m, A- p0 K/ p1 iChapter 1 Probability concepts 18 d0 O6 f$ V8 b1 b2 D( [
1.1 Introduction 1
6 A6 \( ^! M/ B( K. T) k$ q8 e1.2 Sets and Probability 1  N4 ^- Z+ E6 Q/ E; n
1.2.1 Basic Definitions 1" P- d2 t% Q  i4 \
1.2.2 Venn Diagrams and Some Laws 3% S. Z6 w& @5 j* P0 a
1.2.3 Basic Notions of Probability 6
0 ?  Y( L# ^' d+ M! _, `1 q2 ?+ C1.2.4 Some Methods of Counting 8- F* g  ]  M. ]) U2 Z
1.2.5 Properties, Conditional Probability, and Bayes’ Rule 12
" e0 c3 t1 @4 h, k3 R( q( _1.3 Random Variables 17
! s" p8 t. v9 m& w5 ]1.3.1 Step and Impulse Functions 17( L2 f$ T; Y' X6 a' \- M' V
1.3.2 Discrete Random Variables 18
2 `" S1 n1 X2 Y; e; V8 }1.3.3 Continuous Random Variables 20
( e3 P- m% u" u6 H3 i. u1.3.4 Mixed Random Variables 22
+ ^* e! z7 r: K. v8 K( t1.4 Moments 23/ r# g6 _' l  V: l) i
1.4.1 Expectations 23
: I( B" U9 o' s$ G+ s8 H1.4.2 Moment Generating Function and Characteristic Function 26' q# n8 B( C  b4 R4 y- Q& a/ P" J1 G
1.4.3 Upper Bounds on Probabilities and Law of Large
  N3 \/ l8 S5 e$ q+ T8 T* dNumbers 29' F2 d( }' w& C9 S: y
1.5 Two- and Higher-Dimensional Random Variables 31- ^0 n$ [8 S3 G( A( F; b
1.5.1 Conditional Distributions 33
" {& r* n' _) W" g  Y1.5.2 Expectations and Correlations 41
+ u+ M0 y3 _1 @9 U1.5.3 Joint Characteristic Functions 44
5 m/ N8 j* g& r% M1.6 Transformation of Random Variables 48
/ S! I" P" q4 ^2 _7 U5 N" |1.6.1 Functions of One Random Variable 49( v" S" K  v% W
1.6.2 Functions of Two Random Variables 52
- h. s8 B- v0 Y: N9 ]  l5 l1.6.3 Two Functions of Two Random Variables 59
' ^0 |9 S6 ]" U9 I9 H% S- Y4 O& }1.7 Summary 65
, ^$ F. R. L- M& l# X+ dProblems 65* V  \8 k$ g! Q0 y1 Q
Reference 73
0 ]) T1 L7 Q" W! e/ o8 pSelected Bibliography 73
$ y6 ~! y& m0 O, Y' E0 }* OChapter 2 Distributions 75
+ m+ s* s7 e" E0 A# v2 ]2.1 Introduction 75
% U3 g4 \! ?* O( Y1 _$ n, X  M2.2 Discrete Random Variables 75+ K/ }1 G' n- s& B. C$ K! F
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 75
- f( E  c  Z# w; k2.2.2 The Geometric and Pascal Distributions 78
+ Y% q- g, V; A! ]2 @+ l2.2.3 The Hypergeometric Distribution 826 I7 {8 d% z$ N* v6 H: I( o  z, M6 l) F
2.2.4 The Poisson Distribution 85
, c" _# ?; B: b  e$ z1 o4 E2.3 Continuous Random Variables 88
+ y$ X" G( l1 J2.3.1 The Uniform Distribution 88
: R; C0 _2 F+ p) _9 R9 \+ _2.3.2 The Normal Distribution 896 o  _) [- b8 ?! ]$ }, s. d* X
2.3.3 The Exponential and Laplace Distributions 96
, d+ Y" F8 t7 j- `& ?7 C2.3.4 The Gamma and Beta Distributions 98
# t# p5 s; m% {' u. n. J+ f2.3.5 The Chi-Square Distribution 101  k. n% j: `& }* G& `. u: q
2.3.6 The Rayleigh, Rice, and Maxwell Distributions 106
! ~- _! N: Y" c- x+ f4 I2 F: M/ K2.3.7 The Nakagami m-Distribution 115
6 p& i( P* i" X2.3.8 The Student’s t- and F-Distributions 115
2 _! e8 T6 L% z" \) b- J2.3.9 The Cauchy Distribution 120
) `3 j2 R7 G" e$ i$ y2.4 Some Special Distributions 1210 T  v4 g4 U4 A0 ]5 X% q( E, o
2.4.1 The Bivariate and Multivariate Gaussian Distributions 121
- e! E3 n0 w# {" `, x0 `% r2.4.2 The Weibull Distribution 1290 I$ G( K8 `& T. O2 N6 [% k- n
2.4.3 The Log-Normal Distribution 131, i1 p2 I0 l/ [
2.4.4 The K-Distribution 132! i8 L( T( x1 L% x* C
2.4.5 The Generalized Compound Distribution 135) b; z( V% b0 P4 }' R
2.5 Summary 136
% _* o3 H& r1 H' y, dProblems 137
+ Q. R) K; _3 w! m0 K% G: hReference 139
( |) S4 R- p9 i1 r+ gSelected Bibliography 139
* [1 h  X  ?) I, S/ DChapter 3 Random Processes 141
. F: \; M. B2 N& n8 s3.1 Introduction and Definitions 141
# Z  M3 K' H0 [5 W8 a& b# N8 ?3.2 Expectations 145
/ t  K! ^) i$ x/ x+ O- |' F+ o# ]3.3 Properties of Correlation Functions 1537 G% Z  t0 b7 L  M  C' @- @" u/ X
3.3.1 Autocorrelation Function 153
& g: i; K- }1 v+ y6 y9 ~6 E3.3.2 Cross-Correlation Function 153
% y, Z" w6 b$ l+ B3.3.3 Wide-Sense Stationary 154
+ |- @3 h8 c' _  ~- E1 F# r  _3.4 Some Random Processes 156  T! c6 [# @4 L7 D
3.4.1 A Single Pulse of Known Shape but Random Amplitude
7 }4 [. r) g! Q" M) Land Arrival Time 1562 v9 I" u  }0 ~; h7 P: B$ i
3.4.2 Multiple Pulses 157- |; e9 t9 O% K$ y
3.4.3 Periodic Random Processes 158. M' p5 ]0 ^: L: L
3.4.4 The Gaussian Process 161
+ t7 [4 b4 r, B& p2 C2 J+ r3.4.5 The Poisson Process 163
* R5 D. k; K( D) X% N7 e. ?$ V3 n3.4.6 The Bernoulli and Binomial Processes 166
; l# m8 J5 f( ^8 K- i' i3.4.7 The Random Walk and Wiener Processes 168
8 I3 D1 W  ], m3 {+ Z$ d. D3.4.8 The Markov Process 172
( Q, {6 |7 E2 t! X- L- E3.5 Power Spectral Density 1743 y7 P( `: y( ^0 F
3.6 Linear Time-Invariant Systems 178# u& x1 g2 v9 M' d6 x* y/ K  A5 l
3.6.1 Stochastic Signals 179
# f+ _/ u: F1 e  N: U8 z, n* y* `* r. m) P3.6.2 Systems with Multiple Terminals 185$ \! F  F. J& |$ V
3.7 Ergodicity 186( G( p; U7 ~' E
3.7.1 Ergodicity in the Mean 186. ]% d; _# D) s& V2 K; i5 s$ X) B
3.7.2 Ergodicity in the Autocorrelation 1874 Y1 k$ P3 n7 Y* K
3.7.3 Ergodicity of the First-Order Distribution 188
3 a1 [- p8 e1 `1 O2 D! D: k  z3.7.4 Ergodicity of Power Spectral Density 188
: Q/ c' I" t4 q, }- @" ?3.8 Sampling Theorem 189" Q9 I+ R5 X; M# z0 }
3.9 Continuity, Differentiation, and Integration 194
7 ^* p( r) Z* q1 n4 @% [, y  ~3.9.1 Continuity 194
7 @: E9 r1 c( G! o3 k3.9.2 Differentiation 196
$ a  V, l9 k* ~3.9.3 Integrals 1995 r& X4 X& [8 @8 K
3.10 Hilbert Transform and Analytic Signals 2018 D: b( j. Y& g
3.11 Thermal Noise 2058 Y/ k. z% u7 p( P  w) M) ?
3.12 Summary 211
: ?% c0 A* J+ `" e$ V# sProblems 212
+ m5 s9 l& p4 E5 ~Selected Bibliography 2210 {& A! J, ]6 o" z2 S: w; u. c* A
Chapter 4 Discrete-Time Random Processes 223" |$ f  S+ G5 V0 B; d  r% O# b
4.1 Introduction 223$ Y8 L, }& e% f, k7 j" d; G
4.2 Matrix and Linear Algebra 224
: [) L& Z$ F4 s( e! U# k. ~4.2.1 Algebraic Matrix Operations 224# e' w# ^  G+ J8 w- W, d) F
4.2.2 Matrices with Special Forms 232% I8 X$ ^% I; ?% M1 S) [
4.2.3 Eigenvalues and Eigenvectors 236' v6 d; V  b- q& ?& _) x9 r
4.3 Definitions 245' I6 m* k, }: E* e
4.4 AR, MA, and ARMA Random Processes 2531 h) Z4 _, w4 M. I
4.4.1 AR Processes 254
3 [/ q' h# ^0 `- X: v+ m/ n4.4.2 MA Processes 262
9 g- }# ?) Y; {% V4.4.3 ARMA Processes 264
- P( v, F4 P# y& M$ E; k0 u4.5 Markov Chains 266* g% Q) T- }5 A$ @% X
4.5.1 Discrete-Time Markov Chains 267
& J4 i# ?7 h. m0 b9 d- L4.5.2 Continuous-Time Markov Chains 2765 {* k; O! N+ g* U
4.6 Summary 284& Y# J" _5 i4 B% a) r: s+ |
Problems 284+ l, R# f+ i) @
References 2871 Z; K( t8 A; Z* J& Y
Selected Bibliography 2882 V& n* I- ^0 Y2 Q
Chapter 5 Statistical Decision Theory 289( l1 G# r0 B- l1 L4 Y8 W
5.1 Introduction 289
+ ^+ _$ x! y, P9 _9 K' {5 Z5.2 Bayes’ Criterion 291. r* R0 y; D+ s3 n' g8 u- m
5.2.1 Binary Hypothesis Testing 291
0 d) {- H& ~8 |2 v( G9 C; S5.2.2 M-ary Hypothesis Testing 303
! V* n) ^1 B7 ?; x$ d5 I3 n5.3 Minimax Criterion 313
/ `% |0 `3 b# b  A5.4 Neyman-Pearson Criterion 317
/ @3 q; i; C% S" E5.5 Composite Hypothesis Testing 3267 n' ?5 l! N5 F
5.5.1 Θ Random Variable 327
! G2 W2 A; `, g5.5.2 θ Nonrandom and Unknown 329
; e; _# @. ]+ A8 N5.6 Sequential Detection 332
0 c" d- F( O: s5.7 Summary 337
: q- e1 i7 E$ I* W7 Y2 ^2 B/ J9 U7 DProblems 3380 r& I0 I7 \& h5 B' ^0 S) W; O! ^
Selected Bibliography 343. X5 w5 m- T0 ^  t* c" Q  i
Chapter 6 Parameter Estimation 345
; k9 j5 u2 n' R" l9 |6.1 Introduction 345; Y! V$ j' s1 ^$ Q( U" t& q% U
6.2 Maximum Likelihood Estimation 346& T4 x  e6 W: T8 p
6.3 Generalized Likelihood Ratio Test 348
+ w9 `5 C  b+ i/ S: H2 b: g( Z6.4 Some Criteria for Good Estimators 3538 }/ q+ r% ?+ c- e
6.5 Bayes’ Estimation 355
& G% m) X# k2 C; b7 p. y6.5.1 Minimum Mean-Square Error Estimate 3574 \" u  B3 j* ^$ a) z- U- i1 |& `7 f  L
6.5.2 Minimum Mean Absolute Value of Error Estimate 358
, B: C6 y; s; I$ g8 L; n/ T7 C9 W- Q6.5.3 Maximum A Posteriori Estimate 359
& i1 E9 O3 N0 W& z" y5 Z. L6.6 Cramer-Rao Inequality 364/ M9 h" i5 z1 a4 x+ A
6.7 Multiple Parameter Estimation 3714 u7 C  a" \8 }8 d6 ]) O0 ?
6.7.1 θ Nonrandom 371
6 e, F4 N. t$ {$ o$ b& \$ X6.7.2 θ Random Vector 376
% Y. N8 a  u, ~0 y/ |% c% q# `8 T6.8 Best Linear Unbiased Estimator 3781 l  X- h% t* g/ p+ S
6.8.1 One Parameter Linear Mean-Square Estimation 379
! A' K# A3 g  z: X6.8.2 θ Random Vector 381
3 D( w: L$ C, B3 F& r. Y5 F6.8.3 BLUE in White Gaussian Noise 3831 N. |  A8 |" N# o7 Q
6.9 Least-Square Estimation 388  R1 G, {0 b  W7 \
6.10 Recursive Least-Square Estimator 391" @, c/ E& R# @! V! B4 g
6.11 Summary 393
% v  W. x- |) Y4 _Problems 394$ D1 h: x( |% `6 f0 Y0 k
References 398
" l9 [3 Q3 ^+ p9 P# A0 L: ?8 fSelected Bibliography 398' z0 E) J/ v" [* j. z: d* f
Chapter 7 Filtering 399, |: e5 O7 w6 z/ S* E6 Z7 C- H
7.1 Introduction 399
2 c, w' Y/ R. n7.2 Linear Transformation and Orthogonality Principle 400% G4 @" b3 q' t
7.3 Wiener Filters 4092 i2 e: \3 m4 F. E$ C
7.3.1 The Optimum Unrealizable Filter 4108 o( v( B4 `6 K. i: d( }5 E
7.3.2 The Optimum Realizable Filter 416
/ o' J) D3 D- Z4 q( e8 S3 M" J7.4 Discrete Wiener Filters 424
$ v- Y- Y# g* g- p9 w9 v/ l7.4.1 Unrealizable Filter 425) a, ^  `+ _- ?  C
7.4.2 Realizable Filter 426
1 t1 q( g) L* N  |6 h7 a9 T7.5 Kalman Filter 436
- Z# o, m2 k6 O9 Q7.5.1 Innovations 437/ u! p5 }- @( A) B5 g# X
7.5.2 Prediction and Filtering 4402 o0 l9 S/ A! J9 @$ [
7.6 Summary 445
4 v6 I$ z4 Y  m# M7 R; OProblems 445
  q  o( h9 x( y$ p8 aReferences 4485 {4 A0 B1 O# t9 h# S8 `* s
Selected Bibliography 448
4 j! W+ n5 q! R- Q5 xChapter 8 Representation of Signals 4490 W; ~: m! e& V/ T$ l* D7 ^
8.1 Introduction 449
: E" f8 ]8 ~1 `' T' h4 T$ t( [# y3 ~8.2 Orthogonal Functions 449+ n  X' j7 I! A6 ~  a
8.2.1 Generalized Fourier Series 451- `: h% q; L( _5 E$ \
8.2.2 Gram-Schmidt Orthogonalization Procedure 455
8 b0 v5 ?& Q. a# y+ {8.2.3 Geometric Representation 4583 r) c- K% {8 ]! L  n
8.2.4 Fourier Series 4631 A; E# j& m4 n& j2 [- A, W+ X* |
8.3 Linear Differential Operators and Integral Equations 466
. G3 A& P" j; ?- i+ G8.3.1 Green’s Function 470: B' L* k! p2 k8 d# J
8.3.2 Integral Equations 471% D+ o% [6 G* b, {. v
8.3.3 Matrix Analogy 479
  m# R, f( ]. C" M9 B# u5 A3 Z# L8.4 Representation of Random Processes 480
9 w$ `/ q# T5 B& s% \) Y8.4.1 The Gaussian Process 4833 `; g. H' n, x6 W" r1 @% ^& \6 ]3 n
8.4.2 Rational Power Spectral Densities 487
0 d* F* D# {9 o' _$ ]% q1 f5 M8.4.3 The Wiener Process 492
2 S1 A2 H" E! _; T8.4.4 The White Noise Process 4931 W; m: [/ `  D
8.5 Summary 495" |" T  c; A- r9 V
Problems 496
, }  J8 Z, [  [+ B* L  \( t! eReferences 500
! [, c9 L- P$ f! ~( |6 QSelected Bibliography 500
7 Q7 s3 |. [3 w. |% [4 mChapter 9 The General Gaussian Problem 5033 y" j( V, ~1 ^! Q# ^( d. i+ m! |
9.1 Introduction 5032 l' R# i6 c9 W4 q" A
9.2 Binary Detection 503
) @4 x; a( [3 s# h9 ~9.3 Same Covariance 505
. E/ M- W7 G( \9 K0 O9.3.1 Diagonal Covariance Matrix 508" J+ `& Y8 _5 L/ H, r/ ~+ ^
9.3.2 Nondiagonal Covariance Matrix 5118 K$ ^% v/ E0 B' Y/ K
9.4 Same Mean 518
+ V6 p/ A2 X8 V( e/ l: e5 J9.4.1 Uncorrelated Signal Components and Equal Variances 519
4 W( q4 ]* M4 i* Z; ?: T( v0 \9.4.2 Uncorrelated Signal Components and Unequal/ L2 e$ g8 a. }
Variances 522
  y; M! [: c; e9.5 Same Mean and Symmetric Hypotheses 524* T) p3 X- o# s  u8 n) t) t1 Z
9.5.1 Uncorrelated Signal Components and Equal Variances 526
: x  A7 G6 t$ V+ H+ [2 y9.5.2 Uncorrelated Signal Components and Unequal
8 o+ a3 V( D% Y( _Variances 5282 o* `+ S1 ^1 ~7 r8 o% e- l$ m
9.6 Summary 529
, t- r, Z# {' ?( o8 h, lProblems 530
" T$ M) e9 r8 VReference 532
0 A3 `& U- r* U( A) F! {1 TSelected Bibliography 532
1 ^  _" L% b9 nChapter 10 Detection and Parameter Estimation 533
1 \7 r5 U9 P: P" m6 Y; J' D" a/ k10.1 Introduction 533) d0 n1 f) U% p/ ^) e9 w
10.2 Binary Detection 534: P8 X! |  ]9 h) T' E  p. x
10.2.1 Simple Binary Detection 534
9 W  o- u' ^$ ~0 z1 v# O$ {$ t10.2.2 General Binary Detection 543/ t0 w- a& x+ N
10.3 M-ary Detection 556
6 c0 y$ c$ y/ T% c3 z10.3.1 Correlation Receiver 557
$ t' T/ Q3 h6 B2 n8 c10.3.2 Matched Filter Receiver 567
/ R1 J0 s9 \8 Q- W2 I: D4 S+ k10.4 Linear Estimation 572$ v+ O6 [. |- Z" U* S) \! r
10.4.1 ML Estimation 573" d5 L7 p9 J6 M1 S$ O
10.4.2 MAP Estimation 575
: ]) ~  T8 G% X4 U- ]+ [" p1 f10.5 Nonlinear Estimation 5761 h; G* K( K6 G# K
10.5.1 ML Estimation 5768 T( Y2 V# A: S
10.5.2 MAP Estimation 579# a: k2 S6 u1 m0 R& v, `2 t, N
10.6 General Binary Detection with Unwanted Parameters 580- ]' [3 b; ]4 z: l# l* k
10.6.1 Signals with Random Phase 583
' s( t! n  a+ `  a4 u  f# q10.6.2 Signals with Random Phase and Amplitude 595
! }, ~; v8 e3 b3 v10.6.3 Signals with Random Parameters 598
. Y6 p2 V( s$ b- n5 O10.7 Binary Detection in Colored Noise 606
7 D" h  _2 N. R4 O10.7.1 Karhunen-Loève Expansion Approach 607
9 k% F# {# B, c10.7.2 Whitening Approach 611
2 t: U( O7 U3 e% J9 J2 z  B10.7.3 Detection PeRFormance 615
$ L6 q5 k; o8 [9 D10.8 Summary 617  V9 U9 m8 f+ n, L5 m
Problems 618* _0 ^' V/ y7 m) Z
Reference 626! y- N2 D3 w6 n: l5 k2 I
Selected Bibliography 626  d2 L- ]& }5 Z' _; o# l$ O6 t
Chapter 11 Adaptive Thresholding CFAR Detection 627  Z+ g+ ~  `- K( H- I0 P' z3 l
11.1 Introduction 627
' c# W. x* Q' X" g  [. a11.2 Radar Elementary Concepts 629( T: C. ~4 X; j  w9 u9 W( J
11.2.1 Range, Range Resolution, and Unambiguous Range 631
7 A: D, B& Q' t! M3 A7 j  v; \11.2.2 Doppler Shift 6337 ~, U+ z; w. e/ q5 \
11.3 Principles of Adaptive CFAR Detection 634( i' x$ C6 @* C, e( I
11.3.1 Target Models 640
- t+ k, i1 A; ^) s: s11.3.2 Review of Some CFAR Detectors 642
+ H0 G' {9 ?8 v0 S4 t  ^11.4 Adaptive Thresholding in Code Acquisition of Direct-
# C. i0 o1 [' J4 L9 g4 S7 gSequence Spread Spectrum Signals 6480 ?: i. d$ V8 n7 ?+ A2 @
11.4.1 Pseudonoise or Direct Sequences 649
4 H9 B  `+ X; E11.4.2 Direct-Sequence Spread Spectrum Modulation 652) i* V- Y# u3 V6 C' Q
11.4.3 Frequency-Hopped Spread Spectrum Modulation 655
0 \, `, o. `5 r$ T11.4.4 Synchronization of Spread Spectrum Systems 655+ D3 f, y9 [9 F2 l( l0 A
11.4.5 Adaptive Thresholding with False Alarm Constraint 6597 T/ M8 v- T7 b( O7 I2 j2 J
11.5 Summary 6600 i% v- q; B( e( p
References 661& {( F# A( j5 R2 \5 G/ ]  A3 D0 K* _
Chapter 12 Distributed CFAR Detection 665  R- J* n2 A+ Q; F- r
12.1 Introduction 665
( v* ]% d7 L. J3 B12.2 Distributed CA-CFAR Detection 666
" m& Y" |( z$ Q12.3 Further Results 670
7 {0 n) M( M7 k  K3 s8 F12.4 Summary 671; {! `8 s$ K" d' s8 m
References 672. W; @- V$ J! f: L# t
Appendix 675) Y- J( V( a* l" U; `
About the Author 683
4 }# b" x  ~! i: @0 x, b, yIndex 685
- S0 r/ K, u) L4 J2 R' W$ F  K* M4 |

Signal.Detection.and.Estimation.rar

4.24 MB, 下载次数: 2, 下载积分: 威望 -5

该用户从未签到

2#
发表于 2016-11-8 14:19 | 只看该作者
看贴学心得,回贴是美德
5 D2 D5 d8 B* q8 O9 z8 q
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-23 21:44 , Processed in 0.187500 second(s), 27 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表