|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本). u: H; a1 _ e/ u
4 D/ u G, V* t+ W7 J5 M
0 K9 ] @: m4 A1 {+ a7 y8 B; ^% W
上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)
+ p- e1 X0 q. a那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
C4 X6 G: }, y8 D, F
9 ~! C+ c K; Z$ N这篇就是为此而写。3 E& I- v- D+ l8 j. e9 o6 ^
- x5 E9 H3 ?& d& t+ f; A
案例:0 U; o- p4 i, B
5 h: f0 \* d. j; F* R8 r
6 r: d5 d2 A6 b! @ d2 S1 U$ `+ _+ d6 j9 b
想要基于有限样本数来确定他的频谱。
0 s* z# R6 |* N' K1 Q4 b% s9 }& ?2 b; o2 h& I) r! y9 ?
下面我们分如下几种情况来分别讨论:$ h) f7 P% ?1 K& o
* [( _. Q3 V3 m, f! za. 求出并画出
,N = 10 的DFT以及DTFT;
2 v H& z- N: M: L; S# X/ Q% v7 Y3 C+ e/ a' j8 |" f& n, A
b. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;
/ d' K4 ?* e; ?7 r" f6 J& r* a
/ H+ h8 B2 Z( Qc.求出并画出
,N = 100 的DFT以及DTFT;
7 @, s0 c$ S' F
5 d+ ]6 e- F4 Y$ Sd.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;
$ j: ^7 l; n# \8 S8 X( l
0 c2 l5 N& s( m. te. 比较c和d这两个序列的序列的DFT以及DTFT的异同。+ S1 F7 n+ H, T; T; L! p
1 W! {3 W4 C6 \$ A v那就干呗!
8 B/ O5 V5 a1 v% S9 W) z( a6 D# T5 x$ }1 V y8 y# `
题解:
* v1 |' [/ s9 b% V! v
^# L" k1 `4 P) Q' P6 g1 _, |9 @! ya.5 P" G6 f; ~, O+ V! N
* C. J8 g3 ^4 i0 u; B- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
# ^6 o8 n( ? ?2 B8 I+ D4 a$ J
4 F. q$ s7 l' _+ O& l
1 K0 ?4 `& z) l3 o1 z
+ `, k6 n8 q4 F! z6 X9 }' mb.
* I) F- Y& Q, ~4 q: D9 I
- z [' e6 p' S- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % zero padding into N = 100
- n1 = 0:99;
- y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Y1 = dft(y1,100);
- magY1 = abs(Y1);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
8 A0 D; [$ H# f" F5 h J! j) ]
% |" }3 K8 o& |- N& T" ?
) h9 w3 S$ `, ~2 R* p4 {' ` * U6 T% P1 W/ D9 M3 w# M. J
, r# s6 S, \3 P$ x Rc.' r1 c( ~; ~: _+ E8 _0 v
; A) m$ W! ?7 Y9 M' h
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- / }. A" l8 W# z2 O$ ]0 H# {: x
8 }2 W0 P! s% S7 E; i: A
! _$ O. X f! z; W
* E5 v& L+ c9 E- U* ~$ E& X' j; _6 m4 H! I# @2 d' M
太小了,放大看:
! `6 \9 K: l E6 ]: x1 ]" J9 ]+ v* ^! {. `4 `7 h
; {1 g4 V: H3 v# R. ?8 a$ w7 T' Y- k1 l
, E+ K/ ^; ^2 P; A& U' [7 @ `
5 Q( B: |" u0 b, Ud.
+ E6 q: C6 P5 i2 A4 e6 p+ \8 v0 o
4 D E t3 t1 f- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,1)
- stem(n1,x1);
- title('signal x(n), 0 <= n <= 499');
- xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- % stem(w1/pi,magXk);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- h" `: X5 G H9 ] : R- q3 Z2 f, {% w7 p4 l
. Y! L/ r" Z' g3 Z# \
" |6 X: C2 V0 y/ C; e4 ?: F
/ W0 e8 z; u C4 ?e.3 ?" B# V" F( F5 \7 F' y
# x3 k+ s1 R4 u5 u& V* x& j
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- subplot(2,1,1)
- % stem(n,x);
- % title('signal x(n), 0 <= n <= 99');
- % xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- % clc;clear;close all;
- %
- % n = 0:99;
- % x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,2);
- % subplot(2,1,1)
- % stem(n1,x1);
- % title('signal x(n), 0 <= n <= 499');
- % xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- c6 b6 N; G4 M" t6 F! Y0 t
8 \" n) r* k& S. I; e2 V" C
+ P3 N v% I* U! {$ i" {3 X) M) j0 P& \1 e3 A
9 X& T/ E& q3 D+ }局部放大看:
6 m. ], g' p; O( y# v
+ z' S" x7 p$ d4 R8 r
; E! \; |7 g k5 ?2 R( b
" N ~: }, o+ K7 s( l
. n2 M- I* k" F8 i" B. O1 J
) k# A- A0 |! z& n' ]1 |
1 M0 A; Q+ U, } |
|