TA的每日心情 | 怒 2019-11-20 15:22 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
LBlock-s算法的不可能差分分析 ) y, v7 P7 e$ F9 O4 d
摘要: LBlock-s算法是CAESAR竞赛候选认证加密算法LAC中的主体算法,算法结构与L.Block算法基本一致,只是密钥扩展算法采用了扩散效果更好的增强版设计.利用新密钥扩展算法中仍然存在的子密钥间的迭代关系,通过选择合适的14轮不可能差分特征,我们给出了对21轮 IBlock-s算法的不可能差分分析.攻击需要猜测的子密钥比特数为72比特,需要的数据量为2“个选择明文,时间复杂度约为2.次21轮加密.利用部分匹配技术,我们也给出了直到23轮LBlock-s算法低于密钥穷举量的不可能差分分析结果.这些研究可以为LAC算法的整体分析提供参考依据.$ G6 x9 Y+ D# P# D) S; y$ {
关键词: LBlock 算法;LBlock-s 算法;密钥扩展算法;不可能差分分析
( X, s' p( g2 s9 \/ w' L% j# p* U6 q! _- l; l! ^7 i, g
1引言
6 [+ q5 H& `2 U$ ~/ A" yLBlock-s 算法是CAESAR竞赛候选认证加密算法LAC2]中的主体算法.算法整体与LBlock 算法[3基本一致,采用Feistel-SP结构,基于4比特块设计,分组长度为64比特,密钥长度为80 比特,迭代轮数为32轮,但是密钥扩展算法采用了Wang Yanfeng 等针对Bi-clique攻击提出的扩散效果更好的增强版设计4.0 W2 w5 d, N2 {0 M' [* [
. D' d8 f4 P# g1 d不可能差分分析[5·6]是分组密码中非常有效的密码分析方法之一,它利用出现概率为0的差分特征排除错误密钥以达到降低密钥搜索量的目的.2003年, Kim等7给出了自动搜索不可能差分链的矩阵方法.利用该方法,Wu3]等给出了LBlock 算法形如(0, a)a,( B,0)的14轮不可能差分特征(其中 α,β恰有一个非零块),并给出了对20轮LBlock算法的不可能差分分析.利用密钥扩展算法的特点,选择新的不可能差分特征,
, o; x9 {8 g; v) W" c7 W
4 A: ]; O' ~0 X |
|