TA的每日心情 | 开心 2020-7-31 15:46 |
---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
摘要:为了保留图像分析时的像素点位置关系及降维处理,把一维压缩感知理论推广到二维,建立了二维可稀疏信号的压缩测量模型,研究了一种二维信号的自适应梯度下降重构ACDR( Adaptive Gradient Descent Recursion)算法,由此提出了一种图像分层特征提取与检索方法.首先对图像在RGB颜色空间上进行网格离散划分,通过分层算子对图像进行分层映射,定义一种基于颜色网格空间的扩展灰度共生矩阵,采用二维测量模型获取图像的分层测量特征,纹理特征与分层颜色统计特征,图像分层测量特征综合反映出图像的颜色及像素点位置的关系,扩展灰度共生矩阵反映纹理特征.其次用AGDR算法计算检索图像之间的原始信号差量及其稀疏值.最后结合两类分层特征差量、稀疏值和颜色统计特征,融合计算图像间整体相似度度量指标.仿真实验表明,应用分层二维压缩感知测量与AGDR算法的图像检索方法在检索时间、查全率和查准率等指标上具有优越性能,为图像检索提供了新思路./ z* `+ [. y7 d2 y: Y5 e
关键词:―二维压缩感知;图像检索;图像分层特征;纹理特征;自适应梯度下降重构
# L6 W# J" k! Y* e) b2 W0 i1 `4 n
7 F/ g7 `1 K8 v2 q/ ^8 f1 r! w& M/ X+ z5 F2 H: k6 Y, b% w. e
|
|