|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
麻烦大神帮忙看一下,PSO在节点定位算法的仿真,运行后只有两个坐标轴怎么办?感谢!
) E. M- g: |0 a7 ]$ O1 M3 `! V, Q; P, t8 c" L
function[psoF]=pso_2D
! M) M/ i( |7 q$ W) S4 \clc;3 ~9 g) F! |4 f4 |
clear all;2 M2 f3 Z7 ^: M" ?+ k' f- A8 f5 @
pop_size=10;6 k) b$ l _. B! K( N
part_size=2;
1 K0 n3 W* b6 _! E; ] Bgbest=zeros(1,part_size+1);8 A K- D" l) g+ W, l' }7 D" b: D! F
max_gen=300;
1 O: F2 x8 S+ B+ b$ b: i2 Nregion=zeros(part_size,2);& `2 @9 t' q: K
region=10*[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;]; ?8 q: X, |% t/ K7 C; g0 H* z
rand('state',sum(100*clock));
! U1 d+ S1 o; K9 R" harr_present=ini_pos(pop_size,part_size);2 K0 n/ G- I; g4 L3 J
v=ini_v(pop_size,part_size);- B/ B4 L" S' x& g4 B
pbest=zeros(pop_size,part_size+1);4 O5 R* \" D0 {
best_record=zeros(part_size+1,max_gen);
2 E9 w7 }2 l, Q. [% @w_max=0.9;4 o$ N% g" M' {" |9 ]1 P
w_min=0.2;
6 P5 E) e) Q, \' k# M) @+ `v_max=3;
2 ]& ~$ E7 y* `) ~: {. l2 [c1=2;0 i! s- F3 d/ g. `$ _
c2=2;/ }; c, T# Q! q! ?9 x$ C
arr_present(:,end)=ini_fit(arr_present,pop_size,part_size);
1 `( q3 }3 n8 m1 X2 I" s/ p0 Bpbest=arr_present;
3 s3 e9 S% ?+ G[best_value best_index]=max(arr_present(end));2 \; F& Z( Y* C6 c3 A# |* P
gbest=arr_present(best_index, ;
( b/ Q& n M% F; ufor i=1:max_gen
# k2 b7 a5 Q- H8 x/ h" o w=w_max-(w_max-w_min)*i/max_gen;
$ b0 r, }% n7 r/ l for j=1:pop_size
2 l6 d7 X/ M/ Z" Z9 [ v(j, =w.*v(j)+c1.*rand.*(pbest(j,1:part_size)-arr_present(j,1:part_size));7 T% t6 q) x8 q3 H
c2.*rand.*(gbest(1:part_size)-arr_present(j,1:part_size));
" F& f) E6 v- Y- T R# E$ M for k=1:part_size: J" ]2 I2 l5 l0 _9 v9 _0 [# _" x
if abs(v(j,k))>20
) ? g: I$ U% N: c' V( f rand('state',sum(100*clock));' P- `6 L7 G( ]+ h" I9 y S
v(j,k)=20*rand();9 m0 X6 f, b1 p; S( B
end
2 O6 Z/ U0 J: g# O7 R* z( N+ k end
6 Z, t" z4 `. x7 i% k arr_present(j,1:part_size)=arr_present(j,1:part_size)+v(j,1:part_size);
. F2 U! s% H1 Z7 a2 {* @! h$ C6 d arr_present(j,end)=fitness(part_size,arr_present(j,1:part_size));
1 c, x7 m7 v! U0 T4 g$ T, [/ W if(arr_present(j,end)>pbest(j,end))&(Region_in(arr_present(j, ,region))
% m4 ], I9 ~+ L5 V+ _5 A- ? pbest(j)=arr_present(j);0 S8 L+ ?8 Z( o# L- F6 p
end
* {* V& S/ j+ g v end0 e3 ~8 g# K% w1 l9 o0 h) d& `
[best best_index]=max(arr_present(end));& m( E! V# V3 q* Y- [
if best>gbest(end)&&(Region_in(arr_present(best_index),region))
7 z) F7 _" ?$ \7 ?' b; { gbest=arr_present(best_index,:);- [. ]1 M& {8 H. m6 A, O# [/ c1 N/ C
end
$ ~9 j! q8 u3 U1 i xlhd=gbest(1:part_size);
" W+ Q; \# r3 A q if(1) v3 O% ?; W, q- ^1 z) c8 ~7 X
for p=1:259 J9 k8 I: a, b+ x9 X p; {) w
cxl=rand(1,part_size);
# b/ V+ g7 }' s( `# N for j=1:part_size# b- Q: I3 g' n! o5 u3 e3 x
if cxl(j)==07 }5 x# o% N' F- L `. V1 }
cxl(j)=0.1;3 C- |, E9 Z& L# [+ B/ @
end
' N* Q. t3 K# K5 _0 i if cxl(j)==0.25
1 q' W$ x) q( _) I/ \7 g cxl(j)=0.26;
) M6 o# T1 j/ v2 T: _+ t+ A, o* `6 l end1 Q0 c: T7 I2 ]" x0 \
if cxl(j)==0.5( Y( A4 e0 H" q
cxl(j)=0.51;
. h3 v/ C+ W+ ]% C4 f end
5 x+ M/ G: e, H8 v1 C3 n5 ~ if cxl(j)==0.75
6 y+ L5 l8 V% h- K% ^4 F) V cxl(j)=0.76;, [7 }3 c! s3 H8 g! D% h6 }
end
9 I+ B3 n, {$ Q2 Q if cxl(j)==18 V5 c) M; ^" n; d& Y
cxl=0.9;
( |" v4 w$ F: v2 F3 W end3 C5 o- g h0 @$ r: n
end8 W* R! E. K: t. `, d
al=-30;bl=30;1 p/ N: T0 S9 K6 ^1 d2 _
rxl=al+(bl-al)*cxl;
$ c- S7 a1 F" M% ^ bate=0.1;2 Q9 W$ W* r1 j
xlhd=xlhd+bate*rxl;, y5 k. G! [/ s+ ]) G
if fitness(part_size,xlhd)>gbest(end)
6 v$ X! `% D, }2 k; z9 Z gbest(1:part_size)=xlhd;' E- D7 a0 U+ b
gbest(end)=fitness(part_size,xlhd);
$ D, M8 I, r1 A5 u# T: Y/ ] end& i/ P% S' h( H* X+ K
for j=1:part_size
, R8 x3 E* }6 D0 e: h& E cxl(j)=4*cxl(j)*(1-cxl(j));/ ? i2 R% \+ v$ p% g. b
end! {1 ]4 v1 F% Q: h
end7 @7 |7 v* k1 U: w+ T% W3 v
end;
6 M" i; N8 I) D+ C, Q' I4 [. K3 v* ]& u
best_record(i)=gbest(end);( V6 r m: \3 Z* V1 F& e6 L; S
end;* O+ l$ d w# G/ j" j
pso=gbest;
+ d& i* F9 R0 Y5 [2 {( Tdisplay(gbest);0 A( P, p, V3 F9 P1 v4 y+ n! I
figure;
+ B1 l7 C4 Q, u0 U/ N2 M. z2 t+ Hplot(best_record(end));& }. W' k2 L# m/ m
best=zeros(part_size,max_gen);6 m& u8 F4 h6 ^- l
for i=1part_size=1;
* _/ r6 g0 X; s: O* _# ~, v best(i)=best_record(i);
" u( E! a8 Y9 y( y l6 cend! t( a- ?! W3 q4 i) d* Y3 g# a
pareto1=zeros(1,max_gen);1 ~8 K) H& |& X* r
pareto2=zeros(1,max_gen);1 l1 w# d: c" x/ H- e, g: G
for i=1:max_gen
" U; ^' M% R- f pareto1(i)=f1(part_size,best(i));
# J. T% j, B) I W: N; \+ g8 } pareto2(i)=f2(part_size,best(i));, n/ x7 ~; E# S* R' i
end8 ?) h7 `3 }+ Y
figure;2 ]8 V' z: G2 L/ O% u; Z9 s7 E
i=1:max_gen;5 U' r# N* [4 B0 r: z I
plot(pareto1(i),pareto2(i),'r+');# a" g7 @+ _1 \' `. p
xlabel('f1');ylabel('f2');
, M! ^+ v7 @- q u8 m' {title('Pareto曲线');
! ]0 q% o% N) M) ffunction ini_present=ini_pos(pop_size,part_size)
. N2 B0 w! m1 ^! @: a5 r$ fini_present=10*3*rand(pop_size,part_size+1);% O+ O0 i% O6 ^" p3 Y5 @4 }
function ini_velocity=ini_v(pop_size,part_size)
- S. e$ D3 s1 j0 h7 [ini_velocity=20*(rand(pop_size,part_size));1 t0 |; [) `- m$ o8 v* n) \
function flag=Region_in(pos_present,region)3 j& H; ?, {1 r; J, s, g) {
[m n]=size(pos_present);
6 p6 A8 z4 N/ j6 Lflag=1;2 x& F6 X; v0 s! [0 R K. v. p
for j=1:n-1
6 Q4 [( P# a4 u' G' e& q" ~# p flag=flag&(pos_present(1,j)>=region(j,1))&(pos_present(1,j)<=region(j,2)); x& q7 }" I: k8 q& k# W
end
5 W) a3 I$ \# Y8 F9 V8 h3 [6 Rfunction arr_fitness=ini_fit(pos_present,pop_size,part_size)7 X9 @3 B' v# T5 i8 I! U/ G, C. |; g
for k=1:pop_size* W3 ]& s9 n1 N- C4 Q4 n1 }' m
arr_fitness(k,1)=fitness(part_size,pos_present(k,1:part_size));2 O0 m, d* V( f O3 D
end0 z, G3 P# p0 m9 Y
function fit=fitness(n,xp)! D, I( F; q* c* l
y0=[-9.9907,-7.7507];) B" A) g9 b3 d2 g% ^0 q6 i1 @
y1=[f1(n,xp),f2(n,xp)];2 ^+ v8 q5 a9 T0 Y; _0 Z8 T
fit=graydegree(2,y0,y1);
1 M$ X a& Q; _) Q: D% V: U1 H; G* m4 \$ o" lfunction r=f1(n,x)" @/ n" W( i. c- _/ s8 R
r=0;1 P6 j$ D* ~( w+ ^2 b* o
for i=1:n-1
4 }" s) S7 {$ p6 R0 {% A r=r+(-10)*exp((-0.2)*sqrt(x(i)^2+x(i+1)^2));
6 w. \! x5 W* V9 z" S# Kend% z! y! E9 Z2 @# Y! U# M
function r=f2(n,x)
u+ b% b5 ?6 `r=0;
, B* @: L( b3 k( ~, s" J( ufor i=1:n! B8 w: `- Z/ G- V/ A
r=r+(abs(x(i)))^0.8+5*sin(x(i)^3);1 h% I/ ^1 T, e c
end
$ f6 Y; X0 k. ofunction r=g1(n,x)
& G' O; c$ z, P! T9 [r=0;3 H1 M3 [8 ^( q; g( y9 T1 c' G( }2 z
for i=1:n6 u+ L7 d' ~: h
r=0;8 `7 `& I3 E/ N. B% c; V
end
' ^( e7 g2 Z! h) wfunction r=g2(n,x)
, u2 T, @. ?4 _6 @& E9 J- Dr=0;8 B) }- T+ U5 V3 `; n: [3 u3 Y: A0 R) y$ D
for i=1:n
' P" r; \: o3 x H, J* E) m. p r=0;3 Z$ o2 t8 k$ X
end8 F! W/ N, }9 O* w J, R! x. U# `
function gama=graydegree(tn,y0,y1)4 W9 m/ P+ G1 V4 j$ s
gama=0;0 H9 ~7 R) ~# E$ d) T s/ n
rou=0.5;
! u/ F: `1 G& Akesa=zeros(tn,1);
0 t! ^2 h) M3 P# km1=abs(y0(1)-y1(1));
6 \) J6 K# [" \1 A( em2=abs(y0(1)-y1(1));
: n$ {, b; f+ ]7 Z4 e2 Nfor i=1:tn
6 ?7 \% w: W7 F- G5 Z/ W if(abs(y0(i)-y1(i))>m2)
1 H. J* m9 z" p9 @4 A( c m2=abs(y0(i)-y1(i));7 v3 S. B1 \$ a2 K q3 I$ v
end) d3 A' [( a( U5 [9 o# f0 L
end! B* _1 \( D2 L
for i=1:tn( \: U& @# _' `5 n7 y
kesa(i)=(m1+rou*m2)/(abs(y0(i)-y1(i))+rou*m2);& f) x, o! W# E. T) K0 U
gama=gama+kesa(i);# w0 j: q% s$ e( Q
end" |/ T1 l% r6 O2 O4 [
gama=gama/tn;; P8 Y0 S) K, j6 N( I; H
function bool=feasible(x,n)$ I" w7 m" k) E( |
r=0;
2 \" U* x1 D+ C, u$ yr=max(g1(n,x),g2(n,x));1 e: C0 ?8 n+ B4 @/ ]
if(r>0); J- k7 b/ Y6 J3 a& @
bool=0;
" S3 A' M* j! c+ N( n1 Z) belse! I4 ?3 @2 _: w/ {* K i
bool=1;
' y: s. V& B( Oend |
|