|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
大家都知道阻抗要连续,但是,正如罗永浩所说“人生总有几次踩到大便的时候”,PCB设计也总有阻抗不能连续的时候。怎么办?
# i: y. q u7 }" n! J/ O: } 特性阻抗:又称“特征阻抗”,它不是直流电阻,属于长线传输中的概念。在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I,而如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。信号在传输的过程中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。影响特性阻抗的因素有:介电常数、介质厚度、线宽、铜箔厚度。, y$ b) Y3 e$ P
【1】渐变线/ H i7 S" S) d
一些RF器件封装较小,SMD焊盘宽度可能小至12mils,而RF信号线宽可能达50mils以上,要用渐变线,禁止线宽突变。渐变线如图所示,过渡部分的线不宜太长
7 {5 r4 c+ `) n. @! N# n+ h& C7 U5 V$ p% B
【2】拐角
+ h9 m, r5 N( d, X RF信号线如果走直角,拐角处的有效线宽会增大,阻抗不连续,引起信号反射。为了减小不连续性,要对拐角进行处理,有两种方法:切角和圆角。圆弧角的半径应足够大,一般来说,要保证:R>3W。如图右所示。
- L9 {& O) E5 E! }
0 @; `# S3 r$ Q 【3】大焊盘% Q. ?2 z% m! L
当50欧细微带线上有大焊盘时,大焊盘相当于分布电容,破坏了微带线的特性阻抗连续性。可以同时采取两种方法改善:首先将微带线介质变厚,其次将焊盘下方的地平面挖空,都能减小焊盘的分布电容。如下图。0 E" X. k9 H: N# L0 u0 _: z0 M5 C
3 k) t; c% D8 A/ q
【4】过孔
3 o6 r1 v* I8 Q5 h/ ?) E) O% I- M 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。# T6 V, Q+ l! m3 i0 W# `- D% C
: u3 T; P2 l: K( ?2 u d
过孔的寄生参数7 i) f! ]- w# L
若经过严格的物理理论推导和近似分析,可以把过孔的等效电路模型为一个电感两端各串联一个接地电容,如图1所示。4 D5 P2 Y: W% `5 R+ z( T
6 c, U, x \2 Z( F, w" h
从等效电路模型可知,过孔本身存在对地的寄生电容,假设过孔反焊盘直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:
( C) k/ Q! b y6 O/ v( L
, q+ m" w" Z$ u7 F8 W; l 过孔的寄生电容可以导致信号上升时间延长,传输速度减慢,从而恶化信号质量。同样,过孔同时也存在寄生电感,在高速数字PCB中,寄生电感带来的危害往往大于寄生电容。它的寄生串联电感会削弱旁路电容的贡献,从而减弱整个电源系统的滤波效用。假设L为过孔的电感,h为过孔的长度,d为中心钻孔的直径。过孔近似的寄生电感大小近似于: @1 x3 m+ j& b+ ]( e
# V* o5 H8 H5 ]% q* h 过孔是引起RF 通道上阻抗不连续性的重要因素之一,如果信号频率大于1GHz,就要考虑过孔的影响。减小过孔阻抗不连续性的常用方法有:采用无盘工艺、选择出线方式、优化反焊盘直径等。优化反焊盘直径是一种最常用的减小阻抗不连续性的方法。由于过孔特性与孔径、焊盘、反焊盘、层叠结构、出线方式等结构尺寸相关,建议每次设计时都要根据具体情况用HFSS和Optimetrics进行优化仿真。当采用参数化模型时,建模过程很简单。在审查时,需要PCB设计人员提供相应的仿真文档。4 A3 T$ D" F/ j# G4 g' n
过孔的直径、焊盘直径、深度、反焊盘,都会带来变化,造成阻抗不连续性,反射和插入损耗的严重程度。! `: F" \- b, v: U
【5】通孔同轴连接器9 D, `6 p: i& D* T7 i) ~: ^
与过孔结构类似,通孔同轴连接器也存在阻抗不连续性,所以解决方法与过孔相同。减小通孔同轴连接器阻抗不连续性的常用方法同样是:采用无盘工艺、合适的出线方式、优化反焊盘直径。9 I% j- `7 O# J: M- w7 _; }
|
|