|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
接地无疑是系统设计中最为棘手的问题之一。尽管它的概念相对比较简单,实施起来却很复杂,遗憾的是,它没有一个简明扼要可以用详细步骤描述的方法来保证取得良好效果,但如果在某些细节上处理不当,可能会导致令人头痛的问题。
& b f; f# L0 u7 E1 {
2 V0 \. n) n, C 对于线性系统而言,“地”是信号的基准点。遗憾的是,在单极性电源系统中,它还成为电源电流的回路。接地策略应用不当,可能严重损害高精度线性系统的性能。
7 |4 F1 {# v* p, W( K$ f! i) g1 b# i, ] R; m/ v
对于所有模拟设计而言,接地都是一个不容忽视的问题,而在基于PCB的电路中,适当实施接地也具有同等重要的意义。幸运的是,某些高质量接地原理,特别是接地层的使用,对于PCB环境是固有不变的。由于这一因素是基于PCB的模拟设计的显著优势之一,我们将在本文中对其进行重点讨论。8 d6 }6 |5 [7 M7 |2 C) t( s
- D% M! U* X! o- j& A/ C8 z
我们必须对接地的其他一些方面进行管理,包括控制可能导致性能降低的杂散接地和信号返回电压。这些电压可能是由于外部信号耦合、公共电流导致的,或者只是由于接地导线中的过度IR压降导致的。适当地布线、布线的尺寸,以及差分信号处理和接地隔离技术,使得我们能够控制此类寄生电压。
: `9 {( Y, o7 q) z& C
9 y, s% m$ Z8 i \: Q 我们将要讨论的一个重要主题是适用于模拟/数字混合信号环境的接地技术。事实上,高质量接地这个问题可以—也必然—影响到混合信号PCB设计的整个布局原则。
3 j) G4 |0 ]% W- B: E) f& k2 n6 `3 Z3 {, Q0 a
目前的信号处理系统一般需要混合信号器件,例如模数转换器(ADC)、数模转换器(DAC)和快速数字信号处理器(DSP)。由于需要处理宽动态范围的模拟信号,因此必须使用高性能ADC和DAC。在恶劣的数字环境内,能否保持宽动态范围和低噪声与采用良好的高速电路设计技术密切相关,包括适当的信号布线、去耦和接地。
3 c4 a2 ^3 b: ^( a# I2 u% Y: O8 {/ i8 U& O. }
过去,一般认为“高精度、低速”电路与所谓的“高速”电路有所不同。对于ADC和DAC,采样(或更新)频率一般用作区分速度标准。不过,以下两个示例显示,实际操作中,目前大多数信号处理IC真正实现了“高速”,因此必须作为此类器件来对待,才能保持高性能。DSP、ADC和DAC均是如此。* u, F$ S! s0 y0 j8 E# g; I
5 m5 { P% s+ Z$ f
所有适合信号处理应用的采样ADC(内置采样保持电路的ADC)均采用具有快速上升和下降时间(一般为数纳秒)的高速时钟工作,即使呑吐量看似较低也必须视为高速器件。例如,中速12位逐次逼近型(SAR) ADC可采用10 MHz内部时钟工作,而采样速率仅为500 kSPS。
+ ^( s; c) I9 T, E4 o. x% h/ u" C& q9 f5 R4 m8 b l9 m" u
Σ-Δ型ADC具有高过采样比,因此还需要高速时钟。即使是高分辨率的所谓“低频”工业测量ADC(例如AD77xx-系列)吞吐速率达到10 Hz至7.5 kHz,也采用5 MHz或更高时钟频率工作,并且提供高达24位的分辨率。
5 k2 A& k$ K; v6 X- J1 a* e: S0 b# a1 D
更复杂的是,混合信号IC具有模拟和数字两种端口,因此如何使用适当的接地技术就显示更加错综复杂。此外,某些混合信号IC具有相对较低的数字电流,而另一些具有高数字电流。很多情况下,这两种类型的IC需要不同的处理,以实现最佳接地。
( K8 h1 l$ H2 e. B
4 b5 I$ K+ ?" I& g; e( H 数字和模拟设计工程师倾向于从不同角度考察混合信号器件,本文旨在说明适用于大多数混合信号器件的一般接地原则,而不必了解内部电路的具体细节。
+ p: q8 o: r' {3 m8 @+ @
) x0 Z* J4 v- f" z+ q 通过以上内容,显然接地问题没有一本快速手册。遗憾的是,我们并不能提供可以保证接地成功的技术列表。我们只能说忽视一些事情,可能会导致一些问题。在某一个频率范围内行之有效的方法,在另一个频率范围内可能行不通。另外还有一些相互冲突的要求。处理接地问题的关键在于理解电流的流动方式。1 @9 {2 p4 y# S7 O- H6 ~1 t
|
|