|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
引言, G7 ?: W U" Z& v: I
当前,电子设备的主要失效形式就是热失效。据统计,电子设备的失效有55%是温度超过规定值引起的,随着温度的增加,电子设备的失效率呈指数增长。所以,功率器件热设计是电子设备结构设计中不可忽略的一个环节,直接决定了产品的成功与否,良好的热设计是保证设备运行稳定可靠的基础。9 t9 g7 f: e3 s% t+ \( w; e! v
功率器件热性能的主要参数: f, _4 P3 ~; l4 H( B M- N
功率器件受到的热应力可来自器件内部,也可来自器件外部。若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全工作。表征功率器件热能力的参数主要有结温和热阻。
5 `' g" b7 l+ [器件的有源区可以是结型器件(如晶体管)的PN结区、场效应器件的沟道区,也可以是集成电路的扩散电阻或薄膜电阻等。当结温Tj高于周围环境温度Ta时,热量通过温差形成扩散热流,由芯片通过管壳向外散发,散发出的热量随着温差(Tj-Ta)的增大而增大。为了保证器件能够长期正常工作,必须规定一个最高允许结温 Tj max。Tj max的大小是根据器件的芯片材料、封装材料和可靠性要求确定的。' C( H* a( N+ h2 } s; {7 T5 Y
功率器件的散热能力通常用热阻表征,记为Rt,热阻越大,则散热能力越差。热阻又分为内热阻和外热阻:内热阻是器件自身固有的热阻,与管芯、外壳材料的导热率、厚度和截面积以及加工工艺等有关;外热阻则与管壳封装的形式有关。一般来说,管壳面积越大,则外热阻越小。金属管壳的外热阻明显低于塑封管壳的外热阻。2 F {# [& W7 A6 l
当功率器件的功率耗散达到一定程度时,器件的结温升高,系统的可靠性降低,为了提高可靠性,应进行功率器件的热设计。# m8 K8 t7 {9 n4 C
功率器件热设计* t1 g& Z$ s" M( g
功率器件热设计主要是防止器件出现过热或温度交变引起的热失效,可分为器件内部芯片的热设计、封装的热设计和管壳的热设计以及功率器件实际使用中的热设计。. y' I, p) T' j$ w
对于一般的功率器件,只需要考虑器件内部、封装和管壳的热设计,而当功耗较大时,则需要安装合适的散热器,通过其有效散热,保证器件结温在安全结温之内正常可靠的工作。
' b; f1 ]5 r. `; ~+ j散热计算6 t# K/ m. V8 [. V8 d) [
最常用的散热方法是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强散热。在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果。散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器。
, u& ]6 i9 F; p5 A1 n9 V. n热量在传递过程中有一定热阻。由器件管芯传到器件底部的热阻为Rjc,器件底部与散热器之间的热阻为Rcs,散热器将热量散到周围空间的热阻为Rsa,总的热阻Rja=Rjc+Rcs+Rsa。若器件的最大功率损耗为Pd,并已知器件允许的结温为Tj、环境温度为Ta,可以按下式求出允许的总热阻Rja。
9 x) `5 ~. z! s# a$ m: MRja ≤(Tj-Ta)/Pd
5 e/ u( |. f, R2 e, }9 X则计算最大允许的散热器到环境温度的热阻Rsa为:6 p* p' \- p- a6 G$ K0 U7 w
Rsa ≤(Tj-Ta)/Pd-(Rjc+Rcs)
^- F9 A' g2 o3 J! R; r* l为设计考虑,一般设Tj为125℃。在较坏的环境温度情况下,一般设Ta=40℃~60℃。Rjc的大小与管芯的尺寸和封装结构有关,一般可以从器件的数据资料中找到。Rcs的大小与安装技术及器件的封装有关。如果器件采用导热油脂或导热垫后,再与散热器安装,其Rcs典型值为0.1℃/W~0.2℃/W;若器件底面不绝缘,需要另外加云母片绝缘,则其Rcs可达1℃/W。Pd为实际的最大损耗功率,可根据不同器件的工作条件计算而得。这样,Rsa可以计算出来,根据计算的Rsa值可选合适的散热器了。
3 N! X# z) K r C' l8 z计算实例* U8 R" v, Z9 J1 R: C
一功率运算放大器PA02作低频功放,器件为8引脚TO-3金属外壳封装。器件工作条件如下:工作电压Vs为18V,负载阻抗RL为4剑?绷魈跫?鹿ぷ髌德士纱?kHz,环境温度设为40℃,采用自然冷却。8 K" d2 b9 F- a$ T1 [# s, l \
查PA02器件资料可知:静态电流Iq典型值为27mA,最大值为40mA;器件的Rjc(从管芯到外壳)典型值为2.4℃/W,最大值为2.6℃/W。
! O* e4 W+ R* F2 T: [+ {器件的功耗为Pd:
% C# @1 k" {1 e4 [% C5 I4 KPd=Pdq+Pdout2 `% J7 C! o7 W
式中Pdq为器件内部电路的功耗,Pdout为输出功率的功耗。Pdq=Iq(Vs+|-Vs|),Pdout=Vs2/(4 RL),代入上式
0 d/ Z$ ]: `3 c: p5 @3 n% G. V' {Pd=Iq(Vs+|-Vs|)+Vs2/(4 RL); l! r& K/ n. P
=0.037×(18+18)+182/(4×4)# x% v' c& z# A; s1 V3 g7 a
=21.6 W6 r6 Q+ Y7 _/ w+ U v
式中,静态电流取37mA。, U5 Q: c9 v6 E+ z& G" _
散热器热阻Rsa计算:Rsa ≤(Tj-Ta)/Pd-(Rjc+Rcs)" F! q0 B# e9 f) G- }/ @
为留有余量,Tj设为125℃,Ta设为40℃,Rjc取最大值(Rjc=2.6℃/W),Rcs取0.2℃/W(PA02直接安装在散热器上,中间有导热油脂)。将上述数据代入公式得:
( U( Q8 |; S% \: d) ]Rsa≤(125-40)/21.6-(2.6+0.2)≤1.135℃/W. b) A# U! u7 h1 c
HSO4在自然对流时热阻为0.95℃/W,可满足散热要求。# L. a9 h: k% h; u0 S% f. r/ X
散热器的选取
5 V, |& i& u3 e& n6 n4 Q: O散热器一般是标准件,也可提供型材,由用户根据要求切割成一定长度而制成非标准的散热器。散热器的表面处理有电泳涂漆或黑色氧极化处理,其目的是提高散热效率及绝缘性能。在自然冷却下可提高10%~15%,在通风冷却下可提高3%,电泳涂漆可耐压500V~800V。散热器厂家对不同型号的散热器给出热阻值或给出有关曲线,并且给出在不同散热条件下的不同热阻值。4 M2 t2 C* n# I# E7 [: M4 r
功率器件使用散热器是要控制功率器件的温度,尤其是结温Tj,使其低于功率器件正常工作的安全结温,从而提高功率器件的可靠性。常规散热器趋向标准化、系列化、通用化,而新产品则向低热阻、多功能、体积小、质量轻、适用于自动化生产与安装等方向发展。合理地选用、设计散热器,能有效降低功率器件的结温,提高功率器件的可靠性。6 c3 y/ P* o1 l2 {* Y
各种功率器件的内热阻不同,安装散热器时由于接触面和安装力矩的不同,会导致功率器件与散热器之间的接触热阻不同。选择散热器的主要依据是散热器热阻Rtf。在不同的环境条件下,功率器件的散热情况也不同。因此,选择合适的散热器还要考虑环境因素、散热器与功率器件4 h+ R7 U) \4 W5 V
的匹配情况以及整个电子设备的体积、质量等因素。+ ?6 z( }; a8 o! v0 n! [
首先根据功率器件正常工作时的性能参数和环境参数,计算功率器件结温是否工作在安全结温之内,判断是否需要安装散热器,如需安装则计算相应的散热器热阻,初选一散热器;重新计算功率器件结温,判断功率器件结温是否在安全结温范围之内,从而判断所选散热器是否满足要求;对于符合要求的散热器,应根据实际工程需要进行优化设计。! [9 r7 h: X) G' m g! z+ Q9 W, Q, ]
结语1 V+ ] X4 U% O+ Y/ A3 z
通过功率器件发热原理的分析和散热计算,可以指导设计散热方式和散热器的选择,保证了功率器件工作在安全的温度范围内,减少了质量问题,提高了电子产品的可靠性。电子设备的可靠性还同元器件、结构、装配、工艺、加工质量等有关,在实际工程应用上,还应通过各种试验取得反馈数据来完善设计,进一步提高电子设备的可靠性。$ g7 W6 o4 m* h; B
* s& u' q! N3 |& }
|
|