|
|
REGRESS Multiple linear regression using least squares.6 y4 A# S& a% L5 u
B = REGRESS (Y,X) " \' S6 e! @9 v: ~" h
returns the vector B of regression coefficients in the6 R0 z8 t: f. B5 Q
linear model Y = X*B.
) \# s$ u J K& ~/ ]- D# g5 T3 b! I* ^
X is an n-by-p design matrix, with rows
! N* O% u( W$ k# d& {corresponding to observations and columns to predictor variables.1 a5 R$ A# c, X& k
) F# c* S( G. ` L( f6 n ^3 s
Y is an n-by-1 vector of response observations.
! d! C( `" _6 Q; r/ L% LREGRESS' N5 y0 n1 h9 W! l
多元线性回归——用最小二乘估计法
0 D1 M4 ]- R( W5 N1 H7 J# [B = REGRESS (Y,X) ,( e1 ^9 M7 N3 n$ W
) a+ G$ F$ O/ y3 E+ W' l0 N# _/ b" o
返回值为线性模型Y = X*B的回归系数向量1 w& P r, P+ j1 F J% y& L
X ,n-by-p 矩阵,行对应于观测值,列对应于预测变量
% k4 X* n A& }1 b2 n Y ,n-by-1 向量,观测值的响应(即因变量)* T/ x2 g6 x/ s6 c
6 b& R! s1 H2 P- _* z
[B,BINT] = REGRESS (Y,X) " Z9 q% o( L8 W+ o
returns a matrix BINT of 95% confidence intervals for B.
8 D8 C- {- W' q/ J% h. ]BINT,B的95%的置信区间矩阵5 l x0 k2 A9 a5 J( `! \$ U0 T7 q1 M: K
- P1 `4 p; R7 Q& T% ~
[B,BINT,R] = REGRESS (Y,X). P5 \0 X7 \- g( c9 _+ t
returns a vector R of residuals.5 b7 p3 ~; F3 z( Q' D. Y; }% a( ]
R,残差向量& y! J$ |2 ~6 o" f5 v* T
5 _, t( Q8 R, J0 L* t A- p) v% t[B,BINT,R,RINT] = REGRESS (Y,X) ! E: J5 w5 c! r2 c0 x! h, N
returns a matrix RINT of intervals that
2 C% u' K' |: T! Zcan be used to diagnose outliers. R. T V, }5 H. O0 d1 X" E
/ M+ k! K5 T" t6 D; I
If RINT(i,: ) does not contain zero,
, D' j( F: i$ f; V; e. ~0 X. ?' z1 B+ }: B8 o8 F
then the i-th residual is larger than would be expected, at the 5%0 E2 Q7 q6 j6 A( g6 ]. y6 a& I
significance level.: M5 \, g- r7 o7 l
+ h0 V+ X6 F* M
This is evidence that the I-th observation is an outlier." [: Z E5 R# ^2 d
9 B2 K& C3 @# T) S$ J6 k" KRINT,区间矩阵,该矩阵可以用来诊断异常(即发现奇异观测值,译者注)。
& ?: T6 d+ J) V$ @* j如果RINT(i,:)所定区间没有包含0,则第i个残差在默认的5%的显著性水平比我们所预期的要大,这可说明第i个观测值是个奇异点(即说明该点可能是错误而无意义的,如记录错误等,译者注)
* \/ B; k' N r& w
2 _7 e/ Y( w7 f& F, D[B,BINT,R,RINT,STATS] = REGRESS (Y,X)
1 {, ]9 J9 t4 U4 `$ R" E% kreturns a vector STATS containing: Q4 a6 r! ~8 h# m
the R-square statistic, the F statistic and p value for the full model,and an estimate of the error variance.
# ]) a' U U+ s9 R* X. Q' k. P! {# g
STATS,向量,包括R方统计量,F统计量,总模型的p值(还不清楚)和方差的一个估计(还不清楚)
5 O( F$ s$ n3 T) T! d3 [9 [! @+ B0 v% p' F: F* m; l
[...] = REGRESS (Y,X,ALPHA)
- L6 C+ L# g" M! P+ P3 n: Suses a 100*(1-ALPHA)% confidence level to compute BINT, and a (100*ALPHA)% significance level to compute RINT.
4 ]2 _9 o$ x5 l( ?( s3 u: u用100*(1-ALPHA)%的置信水平来计算BINT,
, j8 B/ k+ y) U用(100*ALPHA)%的显著性水平来计算RINT: |0 X+ A6 C7 s2 u. t5 S
8 z0 Z; W4 y, U' q7 f6 \X should include a column of ones so that the model contains a constant, G( m+ c+ C" W/ K2 T. S
term.2 N+ j+ D; U! v& M& k/ Y- ~- W* ]" W0 f
The F statistic and p value are computed under the assumption0 t0 [ j3 h$ j
that the model contains a constant term, and they are not correct for. y: c- ]$ r' z$ H$ Y5 {
models without a constant.( F1 t* B9 B/ {' o" c3 u+ f8 I# e
The R-square value is one minus the ratio of
3 m7 f/ a; R {! x! ?# y% V# Vthe error sum of squares to the total sum of squares.! a+ q/ `( _3 L
This value can. a/ X. r2 q& i# F5 I& ?& k
be negative for models without a constant, which indicates that the model is not appropriate for the data.
5 {3 P8 D( C4 g! z# l2 d3 [X应该包含一个全“1”的列,这样则该模型包含常数项。F统计量和p值是在模型有常数项的假设下计算的,如果模型没有常数项,则计算得的F统计量和p值是不正确的。The R-square value is one minus the ratio of the error sum of squares to the total sum of squares.(此句无法把握,请高手帮忙~~!)若模型没有常数项,则这个值可以为负值,这也表明这个模型对数据是不合适的。(即数据不适合用多元线性模型,译者注)0 h! Y. d% L4 K8 ]0 m& ~
9 }; @; c2 e& u1 V1 [& |
If columns of X are linearly dependent, REGRESS sets the maximum, O6 w* y, E6 U, }; P
possible number of elements of B to zero to obtain a "basic solution",
o4 [& Q% _2 J7 [" a- m, Nand returns zeros in elements of BINT corresponding to the zero elements of B.
7 z1 a3 X1 @( B如果X的列是线性相关的,则REGRESS将使B的元素中“0”的数量尽量多,以此获得一个“基本解”,并且使B中元素“0”所对应的BINT元素为“0”。7 s* u ~; i0 q* M$ ~
: E x, h. c+ L1 D2 T% [' eREGRESS treats NaNs in X or Y as missing values, and removes them. REGRESS, m8 Z* @' d+ L# y' S: h: C6 y
将X或者Y中的NaNs当作缺失值处理,并且移除它们。 |
|