找回密码
 注册
关于网站域名变更的通知
查看: 484|回复: 1
打印 上一主题 下一主题

MATLAB —— 信号处理工具箱之fft的案例分析

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-26 14:06 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
4 n" h$ X8 b$ b, }
上篇:
MATLAB —— 信号处理工具箱之fft的介绍和相关案例分析介绍了MATLAB信号处理工具箱中的信号变换 fft 并分析了一个案例,就是被噪声污染了的信号的频谱分析。; Z3 J9 j" q5 {, t+ k, `

0 `1 s# I& J, O, O6 z/ n1 x这篇博文继续分析几个小案例:; Q- [' D. n! E7 Z* m% x$ h/ y1 P5 y% w
" U; |7 C+ P. b3 p, s
Gaussian Pulse

/ @4 J& z3 D1 k& q+ \这个案例是将高斯脉冲从时域变换到频域,高斯脉冲的信息在下面的程序中都有注释:
6 W2 d% O! P4 \. t5 r& g  h: I, L  ~! T# ^' m9 E
  • clc
  • clear
  • close all
  • % Convert a Gaussian pulse from the time domain to the frequency domain.
  • %
  • % Define signal parameters and a Gaussian pulse, X.
  • Fs = 100;           % Sampling frequency
  • t = -0.5:1/Fs:0.5;  % Time vector
  • L = length(t);      % Signal length
  • X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
  • % Plot the pulse in the time domain.
  • figure();
  • plot(t,X)
  • title('Gaussian Pulse in Time Domain')
  • xlabel('Time (t)')
  • ylabel('X(t)')
  • % To use the fft function to convert the signal to the frequency domain,
  • % first identify a new input length that is the next power of 2 from the original signal length.
  • % This will pad the signal X with trailing zeros in order to improve the peRFormance of fft.
  • n = 2^nextpow2(L);
  • % Convert the Gaussian pulse to the frequency domain.
  • %
  • Y = fft(X,n);
  • % Define the frequency domain and plot the unique frequencies.
  • f = Fs*(0: (n/2))/n;
  • P = abs(Y/n);
  • figure();
  • plot(f,P(1:n/2+1))
  • title('Gaussian Pulse in Frequency Domain')
  • xlabel('Frequency (f)')
  • ylabel('|P(f)|')
  • / g6 M# S+ o2 v' V
        
! |9 U' t7 k, @ / H) {3 H& `8 h# n! d5 `% w
高斯脉冲在时域的图像:
4 L  Y, u+ n% E' l5 y8 D0 C
1 x' d+ @* e$ n$ O' D# o( S" r3 S1 r 0 K6 H; _* y2 g5 T& N5 D9 O  ]

# _  G/ C' `& c/ y- o高斯脉冲在频域的图像:7 Z8 M0 u! o6 O& v, m

( _, G6 Q& ^5 c4 O4 z, Q
8 z8 M9 L) P: l/ m# J. R3 M: G( a
  h% t8 C8 d: W: z5 v& L
1 o! ]" W) K. E; o4 C, E
: E5 D3 v9 A2 N& A' g( n) r" S9 X
Cosine Waves
/ c. S. n) l% }* o, I

, P. R  B' H: z. Y: I这个例子比较简单,就是不同频率的余弦波在时域以及频域的比较:
2 _1 }* ?6 N8 h0 Y. f$ e1 `# t3 Y7 V! w0 C
  • clc
  • clear
  • close all
  • % Compare cosine waves in the time domain and the frequency domain.
  • %
  • % Specify the parameters of a signal with a sampling frequency of 1kHz and a signal duration of 1 second.

  • 2 j6 `$ a+ ~- u) W2 ?# L7 N
  • Fs = 1000;                    % Sampling frequency
  • T = 1/Fs;                     % Sampling period
  • L = 1000;                     % Length of signal
  • t = (0: L-1)*T;                % Time vector
  • % Create a matrix where each row represents a cosine wave with scaled frequency.
  • % The result, X, is a 3-by-1000 matrix. The first row has a wave frequency of 50,
  • % the second row has a wave frequency of 150, and the third row has a wave frequency of 300.
  • 3 V9 W8 ?5 T  Y$ t& u" H
  • x1 = cos(2*pi*50*t);          % First row wave
  • x2 = cos(2*pi*150*t);         % Second row wave
  • x3 = cos(2*pi*300*t);         % Third row wave

  • / Y! g- F9 g5 E- W* d
  • X = [x1; x2; x3];
  • % Plot the first 100 entries from each row of X in a single figure in order and compare their frequencies.

  • ' M7 V. e0 O) a
  • figure();
  • for i = 1:3
  •     subplot(3,1,i)
  •     plot(t(1:100),X(i,1:100))
  •     title(['Row ',num2str(i),' in the Time Domain'])
  • end
  • # d8 m/ o8 N+ N+ B8 Z
  • % For algorithm performance purposes, fft allows you to pad the input with trailing zeros.
  • % In this case, pad each row of X with zeros so that the length of each row is the next higher power of 2 from the current length.
  • % Define the new length using the nextpow2 function.

  • % H; S7 L# q! y
  • n = 2^nextpow2(L);
  • % Specify the dim argument to use fft along the rows of X, that is, for each signal.
  •   b( P- T" n4 e( k
  • dim = 2;
  • % Compute the Fourier transform of the signals.

  • 7 [' }4 y, `: A' _1 r7 Y; v% s
  • Y = fft(X,n,dim);
  • % Calculate the double-sided spectrum and single-sided spectrum of each signal.

  • 0 W# h. K& z% }% ?6 t* Z& T
  • P2 = abs(Y/L);
  • P1 = P2(:,1:n/2+1);
  • P1(:,2:end-1) = 2*P1(:,2:end-1);
  • % In the frequency domain, plot the single-sided amplitude spectrum for each row in a single figure.
  • ; r8 W/ m! o( a
  • figure();
  • for i=1:3
  •     subplot(3,1,i)
  •     plot(0: (Fs/n): (Fs/2-Fs/n),P1(i,1:n/2))
  •     title(['Row ',num2str(i),' in the Frequency Domain'])
  • end
    ) W1 s' g& j# W1 k8 V0 ]3 ?3 \
           
" z+ J7 e9 J; X- ?& o, o+ i
. x& @  I" I& N6 x下图是频率为50Hz,150Hz以及300Hz的余弦波在时域的图像:
& F5 ]: _% v# ^5 L: ~) O. s. q
2 @5 p# f2 M9 b7 x# P7 @! s2 Z0 o+ @
0 f. l" P& g+ S' Z; F/ B7 ]
7 ^0 J" E6 W$ N3 P- x下图分别为其fft:
% z: m+ E1 U9 ^+ f* {! c/ Z9 P$ U  r
7 v: F1 f& O- F9 [* ?$ Z& c

9 P$ g% m/ b  _& m从频域图中可以清晰的看到它们的频率成分位于何处。
3 l( M# J5 E/ Q/ U8 M) l
# D  \# d8 X3 n7 w+ |  _# D  Q* q

9 n- X' p& }! F* b- A
  • TA的每日心情
    开心
    2020-12-3 15:53
  • 签到天数: 38 天

    [LV.5]常住居民I

    2#
    发表于 2019-11-26 16:00 | 只看该作者
    看看,学习一下
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-23 22:10 , Processed in 0.156250 second(s), 26 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表