|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
$ Y& U, m+ [5 h7 p& c" }6 \
cortex m3具有用户级和特权级两种特权等级 以及 handle模式(处理中断时运行在handle模式)和线程模式 两种模式,其中用户级特权只能运行在线程模式。
6 A5 x9 v* a3 D. b
4 F A" u+ l: [6 q# V' \如下图(摘自cortex m3权威指南):
7 b% v- r7 [/ z/ k, m2 m+ m* M0 r* E& ~0 m2 n
+ q9 R- c: m0 L0 E/ ?; k! q
* V9 y* L% r* N3 D+ i7 @ c
经过测试rtthread所有的代码都是运行在特权级下的,只不过开机启动的时候特权级线程模式使用的堆栈指针是MSP,调用rt_system_scheduler_start()函数之后 开始线程调度,这些线程包括用户自定义的线程,以及main()函数线程,以及空闲线程也都是特权级,只不过它们使用的堆栈指针是PSP,为了区分,我下面的博客把这种使用PSP寄存器的特权级线程,称之为用户级线程,但要注意实际上它们是特权级的(这个freertos不一样,freertos里面的这种线程都是运行在用户级的)。另外handle模式也就是中断处理函数都是特权级的无法改变,并且使用的都是MSP。证据如下:& |0 X3 e% u. f5 h0 N' x
* U; l( n1 Q N+ a- |: K( g
Z1 i- W3 {: B
8 i8 N/ K) I% Z0 g- J- A+ g
% [: H! L: W3 Y3 z) f
& V4 _: r1 Q; N3 k# R! a+ U( urt_system_scheduler_start()函数在触发PendSV中断之后,会通过BX LR语句,进行返回,返回后的处理器状态决定于LR寄存器中保存的EXC_RETURN的值,可以看到通过PendSV通过ORR指令把bit2 置1,也就是使用PSP,但并没有改变处理器运行的特权级。个人觉得如果想切换到用户级,需要在调用触发PendSV中断之前,手动修改CONTROL寄存器,但rtthread并没有修改。
4 ?% K5 C. f( h l w2 q5 o+ |; S; M
所以rtthread用户自定义的线程也可以访问所有的特殊寄存器,例如读写PRIMASK寄存器,关闭全局中断等,并且rtthread好像从来没有使用过SVC指令进行系统调用,因为不需要,它本来就是特权级。
6 h/ V% w; a$ b2 Q g# ~
, O6 M4 Z- f) q! Pcortex-m3的soc启动之后(这里以stm32芯片为例),默认运行在特权级的线程模式,' E! q! I7 @( n, E/ ~
2 l8 o: ?2 D4 Z; v! p' Z) T4 {
: r) i" a* |" S S8 C" `% [4 p
' x; R0 s, ~; a8 v8 ~图片来源rtthread官网2 }( u- {! U4 n' Y
# ]* h5 |8 ~. Y8 B在芯片启动后运行完汇编启动文件(主要是初始化MSP堆栈寄存器,以及运行复位中断处理函数,完成初始化),会跳转到$Sub$$main()函数,并按照上图调用rtthread_startup()函数,注意这里全部运行在特权级的线程模式。其中rt_application_init()会初始化用户级线程也就是我们用户自己编写的main()函数,但是初始化之后并没有运行,知道rt_system_scheduler_start()函数调用之后,打开调度器,开始运行用户级线程,特权级线程至此结束,之后的特权级基本运行在handle模式而不是线程模式。
. D/ e$ K& J: D$ E: p9 M2 u8 X; L7 J. Z
4 L5 Y! p: B8 U8 W9 [$ E下面我们来分析rt_system_scheduler_start()函数:
* R' \4 h' ^% B H4 w7 X3 P$ y0 r& ~4 c
- void rt_system_scheduler_start(void)
- {
- register struct rt_thread *to_thread;
- rt_ubase_t highest_ready_priority;
- /* 其实到这里也就两个用户级线程,一个main函数,一个空闲线程,这里to_thread肯定是前面
- * rt_application_init()函数所初始化的main函数线程
- */
- to_thread = _get_highest_priority_thread(&highest_ready_priority);
- #ifdef RT_USING_SMP
- to_thread->oncpu = rt_hw_cpu_id();
- #else
- rt_current_thread = to_thread;
- #endif /*RT_USING_SMP*/
- rt_schedule_remove_thread(to_thread);
- to_thread->stat = RT_THREAD_RUNNING;
- /* switch to new thread */
- #ifdef RT_USING_SMP
- rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp, to_thread);
- #else
- /*最终调用了以下函数,这个函数好像只在这里调用了一次,由于首次调用,所以不用指定from线程
- *因为运行到这里仍然是特权级的线程模式,并没有用户级线程在运行,所以from线程还不存在,也不用
- *为from线程保存现场
- */
- rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp);
- #endif /*RT_USING_SMP*/
- /* never come back */
- }: c, r) x. v4 H/ v0 `
+ K. R( z3 w r" f& e8 Q
3 D, R2 z# M! `7 h, drt_hw_context_switch_to()函数是汇编函数如下:
5 [& E- L; w" L+ |: B7 P5 s- K- |- f3 p% ~$ R
- rt_hw_context_switch_to:
- LDR R1, =rt_interrupt_to_thread
- STR R0, [R1]
- /* set from thread to 0 */
- LDR R1, =rt_interrupt_from_thread
- MOV R0, #0
- STR R0, [R1]
- /* set interrupt flag to 1 */
- LDR R1, =rt_thread_switch_interrupt_flag
- MOV R0, #1
- STR R0, [R1]
- /* set the PendSV exception priority */
- LDR R0, =SHPR3
- LDR R1, =PENDSV_PRI_LOWEST
- LDR.W R2, [R0,#0] /* read */
- ORR R1, R1, R2 /* modify */
- STR R1, [R0] /* write-back */
- LDR R0, =ICSR /* trigger the PendSV exception (causes context switch) */
- LDR R1, =PENDSVSET_BIT
- STR R1, [R0]
- /* restore MSP */
- /*重置MSP寄存器为中断向量表中指定的值,因为特权级线程模式执行到这里也就到头了,永远也不会返回
- *了,所以可以重置MSP寄存器清空堆栈,供以后中断处理函数使用
- */
- LDR r0, =SCB_VTOR
- LDR r0, [r0]
- LDR r0, [r0]
- NOP
- MSR msp, r0
- /* enable interrupts at processor level */
- /* 打开中断之后会立即调到PendSV中断处理函数,用来切换到main函数线程*/
- CPSIE F
- CPSIE I
- /* never reach here! */ /* 根据官方注释可知,永远不会到达这里了 */* \ p5 K+ N p
: E2 B7 \* `! j; r7 y5 t" F
2 m# U2 ^5 P; X
W3 D+ ^( u/ T A& U
PendSV_Handler中断函数如下:% S% ?6 I0 [( z1 U
# M* Y% { q i, Z' O" j- PendSV_Handler:
- /* disable interrupt to protect context switch */
- MRS R2, PRIMASK
- CPSID I
- /* get rt_thread_switch_interrupt_flag */
- LDR R0, =rt_thread_switch_interrupt_flag
- LDR R1, [R0]
- CBZ R1, pendsv_exit /* pendsv aLReady handled */
- /* clear rt_thread_switch_interrupt_flag to 0 */
- MOV R1, #0
- STR R1, [R0]
- LDR R0, =rt_interrupt_from_thread
- LDR R1, [R0]
- CBZ R1, switch_to_thread /* skip register save at the first time */
- MRS R1, PSP /* get from thread stack pointer */
- STMFD R1!, {R4 - R11} /* push R4 - R11 register */
- LDR R0, [R0]
- STR R1, [R0] /* update from thread stack pointer */
- switch_to_thread:
- LDR R1, =rt_interrupt_to_thread
- LDR R1, [R1]
- LDR R1, [R1] /* load thread stack pointer */
- LDMFD R1!, {R4 - R11} /* pop R4 - R11 register */
- MSR PSP, R1 /* update stack pointer */
- pendsv_exit:
- /* restore interrupt */
- MSR PRIMASK, R2
- ORR LR, LR, #0x04 /* 这句话保证PendSV中断返回之后,自动运行在用户级线程模式,其实是特权级线程模式 */
- BX LR
+ s8 l7 Z* [: y% d: L s$ Q; U
# a8 U+ }8 r" X2 F# ^4 J4 @6 M# `0 R& `/ V' A7 u" D" H4 A
可以看到执行完rt_hw_context_switch_to()函数,特权级线程模式到此结束,PendSV中断会返回用户级线程模式,开始main函数 用户级线程,在main()为用户自定义函数,用户可以在main()中初始化和启动其他用户级线程,之后系统会借助实时时钟的中断、以及rt_thread_sleep()、rt_mq_recv()等函数实现用户级线程切换,其实都是通过调用rt_schedule()实现线程切换的,rt_schedule()函数的实质也是通过出发PendSV中断,来实现线程切换的,也就是之后无论是在用户级线程模式(用户级线程主动调用rt_thread_sleep()、rt_mq_recv()等函数请求切换线程),还是特权级handle模式(实时时钟中断中请求切换线程),都通过触发PendSV中断来实现线程切换,也就是处理器好像再也没有回到特权级线程模式了,都是在特权级handle模式。
: t/ H- v7 e4 H! c
% B4 @+ S/ @' j& {0 r' M这里贴出来rt_schedule()的代码:
& B% N* L5 t* T# R
3 B& S4 q: Q; A+ [$ r- void rt_schedule(void)
- {
- rt_base_t level;
- struct rt_thread *to_thread;
- struct rt_thread *from_thread;
- /* disable interrupt */
- level = rt_hw_interrupt_disable();
- /* check the scheduler is enabled or not */
- if (rt_scheduler_lock_nest == 0)
- {
- rt_ubase_t highest_ready_priority;
- if (rt_thread_ready_priority_group != 0)
- {
- /* need_insert_from_thread: need to insert from_thread to ready queue */
- int need_insert_from_thread = 0;
- to_thread = _get_highest_priority_thread(&highest_ready_priority);
- if ((rt_current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING)
- {
- if (rt_current_thread->current_priority < highest_ready_priority)
- {
- to_thread = rt_current_thread;
- }
- else
- {
- need_insert_from_thread = 1;
- }
- }
- if (to_thread != rt_current_thread)
- {
- /* if the destination thread is not the same as current thread */
- rt_current_priority = (rt_uint8_t)highest_ready_priority;
- from_thread = rt_current_thread;
- rt_current_thread = to_thread;
- RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (from_thread, to_thread));
- if (need_insert_from_thread)
- {
- rt_schedule_insert_thread(from_thread);
- }
- rt_schedule_remove_thread(to_thread);
- to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK);
- /* switch to new thread */
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER,
- ("[%d]switch to priority#%d "
- "thread:%.*s(sp:0x%08x), "
- "from thread:%.*s(sp: 0x%08x)\n",
- rt_interrupt_nest, highest_ready_priority,
- RT_NAME_MAX, to_thread->name, to_thread->sp,
- RT_NAME_MAX, from_thread->name, from_thread->sp));
- #ifdef RT_USING_OVERFLOW_CHECK
- _rt_scheduler_stack_check(to_thread);
- #endif
- if (rt_interrupt_nest == 0)
- {
- extern void rt_thread_handle_sig(rt_bool_t clean_state);
- rt_hw_context_switch((rt_ubase_t)&from_thread->sp,
- (rt_ubase_t)&to_thread->sp);
- /* enable interrupt */
- rt_hw_interrupt_enable(level);
- #ifdef RT_USING_SIGNALS
- /* check signal status */
- rt_thread_handle_sig(RT_TRUE);
- #endif
- goto __exit;
- }
- else
- {
- RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("switch in interrupt\n"));
- rt_hw_context_switch_interrupt((rt_ubase_t)&from_thread->sp,
- (rt_ubase_t)&to_thread->sp);
- }
- }
- else
- {
- rt_schedule_remove_thread(rt_current_thread);
- rt_current_thread->stat = RT_THREAD_RUNNING | (rt_current_thread->stat & ~RT_THREAD_STAT_MASK);
- }
- }
- }
- /* enable interrupt */
- rt_hw_interrupt_enable(level);
- __exit:
- return;
- }
' c8 l" m+ X$ P2 m7 H( B) r" ~ 3 s7 Q8 ?+ g' T4 s" J
5 k# L+ b# g- v v * `' C$ N7 N- b( p. D4 n: [" N
; f" J! w, D0 _( C8 f/ n f. x0 Y |
|