|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 thinkfunny 于 2020-10-22 15:41 编辑
8 {* G% u) M( \- L% y! \1 Q6 ?6 V
, a0 z6 o8 S" Z1 x这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。其中NSPSO是参考了NSGA2的框架和思想。! ? \0 Q( {3 f" f+ d8 L" s
" G$ E! y$ @' i2 l- E
伪代码
9 y7 o' j$ x. o! k3 ]
& d) d+ ~: H: n1 M2 @3 M4 e
具体流程
$ F) t8 E% [, ~" q8 Q4 z B- ①划分数据集为测试集和训练集
- ②初始化PSO算法
- ③迭代开始
- ④计算两个目标值(论文中是特征数和错误率)
- ⑤非支配排序
- ⑥拥挤距离度量并排序
- ⑥对每个粒子从第一前沿面选择一个粒子作为gbest,更新当前粒子
- ⑦调整粒子群
- ⑧迭代结束返回( O6 D8 x2 I) r# X9 M! G5 R
8 \/ x) c+ @( K: b: ^* }! j R4 e2 DMATLAB实现:% e5 K4 t" ^3 X2 J
NSPSO:' f: Z$ U7 r3 Y, Q7 I
* p4 ~: B s3 M1 M( f: Z注意其中FSKNN是我的问题的评价函数,包含两个目标值,都存入到pfitness中
9 t# a7 t* m& I( Y+ x" E+ y( D; |2 |& ^( Q, M) L) w
- function [solution,time,pop,pfitness,site,LeaderAVE] = NSPSO(train_F,train_L)
- tic
- global maxFES
- dim = size(train_F,2);
- FES = 1;
- sizep = 30;
- pop = rand(sizep,dim);
- popv = rand(sizep,dim);
- pfitness = zeros(sizep,2);
- LeaderAVE = zeros(1,2);
- while FES <maxFES
- Off_P = zeros(sizep,dim);
- Off_V = zeros(sizep,dim);
- ofitness = zeros(sizep,2);
- for i=1:sizep
- [pfitness(i,1),pfitness(i,2)] = FSKNN(pop(i,: ),i,train_F,train_L);
- end
- Front = NDSort(pfitness(:,1:2),sizep);
- [~,rank] = sortrows([Front',-CrowdingDistance(pfitness,Front)']);
- LeaderSet = rank(1:10);
- solution = pfitness(LeaderSet,: );
- LeaderAVE(1) = mean(solution(:,1));
- LeaderAVE(2) = mean(solution(:,2));
- for i = 1:sizep
- good = LeaderSet(randperm(length(LeaderSet),1));
- r1 = rand(1,dim);
- r2 = rand(1,dim);
- Off_V(i,: ) = r1.*popv(i,: ) + r2.*(pop(good,: )-pop(i,: ));
- Off_P(i,: ) = pop(i,: ) + Off_V(i,: );
- end
- for i=1:sizep
- [ofitness(i,1),ofitness(i,2)] = FSKNN(Off_P(i,: ),i,train_F,train_L);
- end
- temppop = [pop;Off_P];
- tempv = [popv;Off_V];
- tempfiness = [pfitness;ofitness];
- [FrontNO,MaxFNO] = NDSort(tempfiness(:,1:2),sizep);
- Next = false(1,length(FrontNO));
- Next(FrontNO<MaxFNO) = true;
- PopObj = tempfiness;
- fmax = max(PopObj(FrontNO==1,: ),[],1);
- fmin = min(PopObj(FrontNO==1,: ),[],1);
- PopObj = (PopObj-repmat(fmin,size(PopObj,1),1))./repmat(fmax-fmin,size(PopObj,1),1);
- % Select the solutions in the last front
- Last = find(FrontNO==MaxFNO);
- del = Truncation(PopObj(Last,: ),length(Last)-sizep+sum(Next));
- Next(Last(~del)) = true;
- % Population for next generation
- pop = temppop(Next,: );
- popv = tempv(Next,: );
- pfitness = tempfiness(Next,: );
- fprintf('GEN: %2d Error: %.4f F:%.2f\n',FES,LeaderAVE(1),LeaderAVE(2));
- FES = FES + 1;
- end
- [FrontNO,~] = NDSort(pfitness(:,1:2),sizep);
- site = find(FrontNO==1);
- solution = pfitness(site,: );
- LeaderAVE(1) = mean(solution(:,1));
- LeaderAVE(2) = mean(solution(:,2));
- toc
- time = toc;
- end
1 U2 c& A4 U8 A7 d
- ?1 c+ A; ]! w1 M+ G& A
! j% e' {% i0 {# W {+ b拥挤距离代码:" w2 I, e, U' O0 P
" y# `1 V5 e2 a. d4 Y0 G; |! L4 I: Z- function CrowdDis = CrowdingDistance(PopObj,FrontNO)
- % Calculate the crowding distance of each solution front by front
- % Copyright 2015-2016 Ye Tian
- [N,M] = size(PopObj);
- CrowdDis = zeros(1,N);
- Fronts = setdiff(unique(FrontNO),inf);
- for f = 1 : length(Fronts)
- Front = find(FrontNO==Fronts(f));
- Fmax = max(PopObj(Front,: ),[],1);
- Fmin = min(PopObj(Front,: ),[],1);
- for i = 1 : M
- [~,Rank] = sortrows(PopObj(Front,i));
- CrowdDis(Front(Rank(1))) = inf;
- CrowdDis(Front(Rank(end))) = inf;
- for j = 2 : length(Front)-1
- CrowdDis(Front(Rank(j))) = CrowdDis(Front(Rank(j)))+(PopObj(Front(Rank(j+1)),i)-PopObj(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
- end
- end
- end
- end
- `" w W/ _( k: {& o" ^; Q
- D5 s3 _4 n% P$ s* C C3 }% s7 M6 N6 z. P4 H/ i/ G O) r, _
Truncation.m代码:
' v) o+ |" K, a* t9 Q
, g0 m5 a9 n4 {: Y: E' q- function Del = Truncation(PopObj,K)
- % Select part of the solutions by truncation
- N = size(PopObj,1);
- %% Truncation
- Distance = pdist2(PopObj,PopObj);
- Distance(logical(eye(length(Distance)))) = inf;
- Del = false(1,N);
- while sum(Del) < K
- Remain = find(~Del);
- Temp = sort(Distance(Remain,Remain),2);
- [~,Rank] = sortrows(Temp);
- Del(Remain(Rank(1))) = true;
- end
- end
, N( | r5 E+ m- G
! F2 {; S- {( f: ?( u) M! O: u& e
7 d8 ]5 ?! v% F 1 f0 z) e7 q/ p: b; c7 E$ z0 o0 u
|
|