找回密码
 注册
关于网站域名变更的通知
查看: 414|回复: 1
打印 上一主题 下一主题

基于非支配排序的多目标PSO算法MATLAB实现

[复制链接]

该用户从未签到

跳转到指定楼层
#
发表于 2020-10-22 15:39 | 只看该作者 |只看大图 回帖奖励 |正序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 thinkfunny 于 2020-10-22 15:41 编辑
8 {* G% u) M( \- L% y! \1 Q6 ?6 V
, a0 z6 o8 S" Z1 x这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。其中NSPSO是参考了NSGA2的框架和思想。! ?  \0 Q( {3 f" f+ d8 L" s
" G$ E! y$ @' i2 l- E
伪代码
9 y7 o' j$ x. o! k3 ] & d) d+ ~: H: n1 M2 @3 M4 e
具体流程
$ F) t8 E% [, ~" q8 Q4 z  B
  • ①划分数据集为测试集和训练集
  • ②初始化PSO算法
  • ③迭代开始
  • ④计算两个目标值(论文中是特征数和错误率)
  • ⑤非支配排序
  • ⑥拥挤距离度量并排序
  • ⑥对每个粒子从第一前沿面选择一个粒子作为gbest,更新当前粒子
  • ⑦调整粒子群
  • ⑧迭代结束返回( O6 D8 x2 I) r# X9 M! G5 R

8 \/ x) c+ @( K: b: ^* }! j  R4 e2 DMATLAB实现:% e5 K4 t" ^3 X2 J
NSPSO:' f: Z$ U7 r3 Y, Q7 I

* p4 ~: B  s3 M1 M( f: Z注意其中FSKNN是我的问题的评价函数,包含两个目标值,都存入到pfitness中
9 t# a7 t* m& I( Y+ x" E+ y( D; |2 |& ^( Q, M) L) w
  • function [solution,time,pop,pfitness,site,LeaderAVE] = NSPSO(train_F,train_L)
  • tic
  • global maxFES
  • dim = size(train_F,2);
  • FES = 1;
  • sizep = 30;
  • pop = rand(sizep,dim);
  • popv = rand(sizep,dim);
  • pfitness = zeros(sizep,2);
  • LeaderAVE = zeros(1,2);
  • while FES <maxFES
  •     Off_P = zeros(sizep,dim);
  •     Off_V = zeros(sizep,dim);
  •     ofitness = zeros(sizep,2);
  •     for i=1:sizep
  •         [pfitness(i,1),pfitness(i,2)] = FSKNN(pop(i,: ),i,train_F,train_L);
  •     end
  •     Front = NDSort(pfitness(:,1:2),sizep);
  •     [~,rank] = sortrows([Front',-CrowdingDistance(pfitness,Front)']);
  •     LeaderSet = rank(1:10);
  •     solution = pfitness(LeaderSet,: );
  •     LeaderAVE(1) = mean(solution(:,1));
  •     LeaderAVE(2) = mean(solution(:,2));
  •     for i = 1:sizep
  •         good = LeaderSet(randperm(length(LeaderSet),1));
  •         r1 = rand(1,dim);
  •         r2 = rand(1,dim);
  •         Off_V(i,: ) = r1.*popv(i,: ) +  r2.*(pop(good,: )-pop(i,: ));
  •         Off_P(i,: ) = pop(i,: ) + Off_V(i,: );
  •     end
  •     for i=1:sizep
  •             [ofitness(i,1),ofitness(i,2)] = FSKNN(Off_P(i,: ),i,train_F,train_L);
  •     end
  •     temppop = [pop;Off_P];
  •     tempv = [popv;Off_V];
  •     tempfiness = [pfitness;ofitness];
  •     [FrontNO,MaxFNO] = NDSort(tempfiness(:,1:2),sizep);
  •     Next = false(1,length(FrontNO));
  •     Next(FrontNO<MaxFNO) = true;
  •     PopObj = tempfiness;
  •     fmax   = max(PopObj(FrontNO==1,: ),[],1);
  •     fmin   = min(PopObj(FrontNO==1,: ),[],1);
  •     PopObj = (PopObj-repmat(fmin,size(PopObj,1),1))./repmat(fmax-fmin,size(PopObj,1),1);
  •     % Select the solutions in the last front
  •     Last = find(FrontNO==MaxFNO);
  •     del  = Truncation(PopObj(Last,: ),length(Last)-sizep+sum(Next));
  •     Next(Last(~del)) = true;
  •     % Population for next generation
  •     pop = temppop(Next,: );
  •     popv = tempv(Next,: );
  •     pfitness = tempfiness(Next,: );
  •     fprintf('GEN: %2d   Error: %.4f  F:%.2f\n',FES,LeaderAVE(1),LeaderAVE(2));
  •     FES = FES + 1;
  • end
  • [FrontNO,~] = NDSort(pfitness(:,1:2),sizep);
  • site = find(FrontNO==1);
  • solution = pfitness(site,: );
  • LeaderAVE(1) = mean(solution(:,1));
  • LeaderAVE(2) = mean(solution(:,2));
  • toc
  • time = toc;
  • end
    1 U2 c& A4 U8 A7 d

- ?1 c+ A; ]! w1 M+ G& A
! j% e' {% i0 {# W  {+ b拥挤距离代码:" w2 I, e, U' O0 P

" y# `1 V5 e2 a. d4 Y0 G; |! L4 I: Z
  • function CrowdDis = CrowdingDistance(PopObj,FrontNO)
  • % Calculate the crowding distance of each solution front by front
  • % Copyright 2015-2016 Ye Tian
  •     [N,M]    = size(PopObj);
  •     CrowdDis = zeros(1,N);
  •     Fronts   = setdiff(unique(FrontNO),inf);
  •     for f = 1 : length(Fronts)
  •         Front = find(FrontNO==Fronts(f));
  •         Fmax  = max(PopObj(Front,: ),[],1);
  •         Fmin  = min(PopObj(Front,: ),[],1);
  •         for i = 1 : M
  •             [~,Rank] = sortrows(PopObj(Front,i));
  •             CrowdDis(Front(Rank(1)))   = inf;
  •             CrowdDis(Front(Rank(end))) = inf;
  •             for j = 2 : length(Front)-1
  •                 CrowdDis(Front(Rank(j))) = CrowdDis(Front(Rank(j)))+(PopObj(Front(Rank(j+1)),i)-PopObj(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
  •             end
  •         end
  •     end
  • end
    - `" w  W/ _( k: {& o" ^; Q
   
- D5 s3 _4 n% P$ s* C  C3 }% s7 M6 N6 z. P4 H/ i/ G  O) r, _
Truncation.m代码:
' v) o+ |" K, a* t9 Q
, g0 m5 a9 n4 {: Y: E' q
  • function Del = Truncation(PopObj,K)
  • % Select part of the solutions by truncation
  •     N = size(PopObj,1);
  •     %% Truncation
  •     Distance = pdist2(PopObj,PopObj);
  •     Distance(logical(eye(length(Distance)))) = inf;
  •     Del = false(1,N);
  •     while sum(Del) < K
  •         Remain   = find(~Del);
  •         Temp     = sort(Distance(Remain,Remain),2);
  •         [~,Rank] = sortrows(Temp);
  •         Del(Remain(Rank(1))) = true;
  •     end
  • end
    , N( |  r5 E+ m- G

! F2 {; S- {( f: ?( u) M! O: u& e
7 d8 ]5 ?! v% F   1 f0 z) e7 q/ p: b; c7 E$ z0 o0 u
  • TA的每日心情
    开心
    2020-9-2 15:04
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    1#
    发表于 2020-10-26 10:57 | 只看该作者
    NSPSO采用NSGA2的框架
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-24 12:09 , Processed in 0.156250 second(s), 27 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表