基于芯片集成度、功能和性能要求,主流晶圆技术节点已降低至28-16nm,甚至已跨入10-7nm制程阶段。然而随着晶圆技术节点不断逼近原子级别,实现等比例缩减的代价变得非常高,摩尔定律即将失效的声音层出不穷。如何通过封装技术的发展创新来延续摩尔定律,满足未来通信芯片及消费性电子的需求已成为新的热点。目前业界的前沿封装技术包括以晶圆级封装(WLCSP)和载板级封装(PLP)为代表的2.1D封装,以硅转接板和硅桥为代表的2.5D封装,以及基于三维硅通孔(3DTSV)工艺在Z方向上堆叠芯片的3D封装。其中,3D封装在集成度、性能、功耗等方面更具优势,同时设计自由度更高,开发时间更短,是各封装技术中最具发展前景的一种。8 T8 J2 @) o. f) J; ~7 a* k
3 g5 U2 ?! }! W z7 K
传统意义上3D封装包括2.5D和3DTSV封装技术。硅通孔技术(TSV)实现Die与Die间的垂直互连,通过在Si上打通孔进行芯片间的互连,无需引线键合,有效缩短互连线长度,减少信号传输延迟和损失,提高信号速度和带宽,降低功耗和封装体积,是实现多功能、高性能、高可靠性且更轻、更薄、更小的芯片系统级封装。3DTSV封装结构示意见。" C' h% ?2 O+ D9 F
由于3DTSV封装工艺在设计、量产、测试及供应链等方面还不成熟,且工艺成本较高,目前业界采用介于2D和3D之前的2.5D连接层封装形式,通过在Die和基板间添加一层连接层,大幅度提高封装的输入输出(I/O)信号密度,是3DTSV封装大规模商用之前既经济又实用的方案。 * y' }+ l. F6 c% |$ z