找回密码
 注册
关于网站域名变更的通知
查看: 483|回复: 1
打印 上一主题 下一主题

MATLAB —— 信号处理工具箱之fft的案例分析

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-26 14:06 | 只看该作者 |只看大图 回帖奖励 |正序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
" X5 A  J* b% y# A( W& W
上篇:
MATLAB —— 信号处理工具箱之fft的介绍和相关案例分析介绍了MATLAB信号处理工具箱中的信号变换 fft 并分析了一个案例,就是被噪声污染了的信号的频谱分析。
4 p! C* w$ {5 N8 F% R) `: O9 a' b0 `
这篇博文继续分析几个小案例:
+ e% J6 g. ^" H3 J: V8 ]5 R  d6 R( `, ?4 X! x3 e
Gaussian Pulse

, F6 t( ~, [4 I1 T' [这个案例是将高斯脉冲从时域变换到频域,高斯脉冲的信息在下面的程序中都有注释:
3 T' B! X8 N+ a6 X5 ?" L
4 q+ `5 |. Z- ?9 p5 u
  • clc
  • clear
  • close all
  • % Convert a Gaussian pulse from the time domain to the frequency domain.
  • %
  • % Define signal parameters and a Gaussian pulse, X.
  • Fs = 100;           % Sampling frequency
  • t = -0.5:1/Fs:0.5;  % Time vector
  • L = length(t);      % Signal length
  • X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
  • % Plot the pulse in the time domain.
  • figure();
  • plot(t,X)
  • title('Gaussian Pulse in Time Domain')
  • xlabel('Time (t)')
  • ylabel('X(t)')
  • % To use the fft function to convert the signal to the frequency domain,
  • % first identify a new input length that is the next power of 2 from the original signal length.
  • % This will pad the signal X with trailing zeros in order to improve the peRFormance of fft.
  • n = 2^nextpow2(L);
  • % Convert the Gaussian pulse to the frequency domain.
  • %
  • Y = fft(X,n);
  • % Define the frequency domain and plot the unique frequencies.
  • f = Fs*(0: (n/2))/n;
  • P = abs(Y/n);
  • figure();
  • plot(f,P(1:n/2+1))
  • title('Gaussian Pulse in Frequency Domain')
  • xlabel('Frequency (f)')
  • ylabel('|P(f)|')
  • 6 U  \; j% V- |) z% Y# l: H
        
( N( N8 @2 G8 l2 o2 f. N 2 J1 q. `. f6 b
高斯脉冲在时域的图像:
5 l4 Q1 {+ e! c: F% b' N; f# Y& f& t3 W. `. m+ Q3 @

. ~9 ], a1 P8 I
; n, @) r8 R+ m3 j- Z1 p! j5 o% n高斯脉冲在频域的图像:) t# Q; G  c6 {6 ~* Q! E6 p3 G" S/ k

; G. G- s* X  E6 n$ {5 J) }, j( G

; F4 q6 k' k; U( k; W- `' N: b$ E% M3 S, H4 ^

/ L" H7 R& e. f1 F5 Q/ d# D  u0 I# I, p* G/ A* U
Cosine Waves

2 b/ t" O1 n7 ^4 c
) [, r3 c0 O# O这个例子比较简单,就是不同频率的余弦波在时域以及频域的比较:( @0 b5 `  b( S- F

3 W0 |4 e& H( N) ]+ O( [/ t
  • clc
  • clear
  • close all
  • % Compare cosine waves in the time domain and the frequency domain.
  • %
  • % Specify the parameters of a signal with a sampling frequency of 1kHz and a signal duration of 1 second.
  • 0 n5 [1 a; w* ]8 Q* y# l
  • Fs = 1000;                    % Sampling frequency
  • T = 1/Fs;                     % Sampling period
  • L = 1000;                     % Length of signal
  • t = (0: L-1)*T;                % Time vector
  • % Create a matrix where each row represents a cosine wave with scaled frequency.
  • % The result, X, is a 3-by-1000 matrix. The first row has a wave frequency of 50,
  • % the second row has a wave frequency of 150, and the third row has a wave frequency of 300.
  • - j( P0 M8 I$ \: B7 J" r+ p9 O5 d
  • x1 = cos(2*pi*50*t);          % First row wave
  • x2 = cos(2*pi*150*t);         % Second row wave
  • x3 = cos(2*pi*300*t);         % Third row wave
  • 8 w8 r8 ^& g: T1 A
  • X = [x1; x2; x3];
  • % Plot the first 100 entries from each row of X in a single figure in order and compare their frequencies.
  • & {- w  e6 o& j7 e4 i5 i# b; T
  • figure();
  • for i = 1:3
  •     subplot(3,1,i)
  •     plot(t(1:100),X(i,1:100))
  •     title(['Row ',num2str(i),' in the Time Domain'])
  • end
  • % O8 `) u% s, }  n0 u
  • % For algorithm performance purposes, fft allows you to pad the input with trailing zeros.
  • % In this case, pad each row of X with zeros so that the length of each row is the next higher power of 2 from the current length.
  • % Define the new length using the nextpow2 function.
  • - p0 g; A  F: j
  • n = 2^nextpow2(L);
  • % Specify the dim argument to use fft along the rows of X, that is, for each signal.

  • $ F/ i3 Y% v" Q* @0 D
  • dim = 2;
  • % Compute the Fourier transform of the signals.
  • ( H9 K; w- T1 l2 v- r+ K8 _
  • Y = fft(X,n,dim);
  • % Calculate the double-sided spectrum and single-sided spectrum of each signal.

  • ( L; ?! v; ]  G1 A( x
  • P2 = abs(Y/L);
  • P1 = P2(:,1:n/2+1);
  • P1(:,2:end-1) = 2*P1(:,2:end-1);
  • % In the frequency domain, plot the single-sided amplitude spectrum for each row in a single figure.
  • $ u. N2 h* ?( b
  • figure();
  • for i=1:3
  •     subplot(3,1,i)
  •     plot(0: (Fs/n): (Fs/2-Fs/n),P1(i,1:n/2))
  •     title(['Row ',num2str(i),' in the Frequency Domain'])
  • end
    9 m$ Y7 {* R( `! i9 p
           
) T0 ~) K8 b% M5 f" ~
) a: B% N! ^+ A2 h6 l5 F2 v4 d下图是频率为50Hz,150Hz以及300Hz的余弦波在时域的图像:2 F$ h- R/ \( A' t  r" ~

7 M1 d" S  r4 n8 [% H, W# e 4 |0 f, T- N0 c6 @4 A. x
$ h) R$ Y3 B7 k2 G4 Y/ e4 y9 ^# E
下图分别为其fft:
" W7 r4 a0 y% E  \  H- y
9 Y, X5 P4 g: p: x2 K8 `0 b
* W  B# P* f) v9 Z' E3 }
- W4 j$ ]! I& c3 w3 |, S从频域图中可以清晰的看到它们的频率成分位于何处。
+ L7 \( ]/ p, I0 ?8 H, }

+ Q6 J  Z5 C' y+ q1 S8 Z# ^( A# q* X6 R& T! b6 s; |2 a
  • TA的每日心情
    开心
    2020-12-3 15:53
  • 签到天数: 38 天

    [LV.5]常住居民I

    2#
    发表于 2019-11-26 16:00 | 只看该作者
    看看,学习一下
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-23 20:10 , Processed in 0.171875 second(s), 27 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表