找回密码
 注册
关于网站域名变更的通知
查看: 287|回复: 1
打印 上一主题 下一主题

【玩转多核异构】双核高速率CAN-FD评测——飞凌嵌入式

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2023-2-17 10:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 飞凌嵌入式 于 2023-2-17 10:54 编辑
; ]! ~' T# D# D3 i5 U* L' c0 z" b
6 G( @3 L8 |$ U& i9 k为了能够让更多的工程师朋友了解多核异构处理器,飞凌嵌入式特别推出了【玩转多核异构】专题,帮助大家解决在多核异构处理器的开发过程中遇到的问题。【玩转多核异构】专题持续更新中,欢迎您的持续关注。
# _1 g& N0 v$ y
. r: ]# J# L$ E' _$ d9 r% a引言
2 V3 [7 I3 j* Y3 [6 R; s
# u+ {& X* j/ ]3 h5 C! u
凭借实时性、抗干扰性和安全性等优点,CAN2.0在工业及汽车行业得到了广泛应用,但其最高速率仅为1Mbit/s,每帧最多只能传输8字节的有效数据,报文中只有约50%的带宽用于有效数据传输。然而随着产业的发展,各种传感器和控制器数量的增多,总线上的数据量也激增,这使得CAN2.0总线在传输速率和带宽方面的缺点暴露的更加明显,于是就诞生了CAN-FD。
3 \; o% m' v; `6 u# ~
CAN-FD在传输速率和带宽方面有了明显的提升,波特率可高达8Mbit/s,每帧可多达64字节有效数据,传输效率可提高至约80%,能够进一步提高总线的实时性,拓宽总线的数据带宽,提升总线的传输效率。

8 W2 K9 x/ {0 Z% k6 n
在飞凌嵌入式OKMX8MP-C开发板上有两路CAN-FD,小编今天就基于这款开发板以处理器的M核与A核各控制一路CAN-FD互相通信为例,从应用角度讲述M核和A核如何控制CAN-FD高速通信。

) c% ^+ m# o: ^0 B2 _" d- J7 E
7 g( X& e+ J2 }$ ?' t3 ]- p
OKMX8MP-C开发板

4 r$ s" W4 F4 F: H& C6 `- b
1 Q! d- [- W! L& y: H$ t
飞凌嵌入式OKMX8MP-C开发板所搭载的NXP i.MX8M Plus处理器具备强悍的性能,集成4个主频最高可达1.8GHz(工业级主频为1.6GHz) 的ARM Cortex-A53多任务核和1个Cortex-M7实时核,不管是对数据的高速吞吐、处理,还是复杂的人机交互界面处理,都能从容应对。
2 H- a$ u  }3 `$ h
一、M核CAN-FD+ C- f7 Y7 T1 @$ K
1. CAN-FD初始化
CAN-FD初始化主要包括总线时钟,管脚和相应寄存器的初始化。具体如下:

9 ?, ?4 P) d/ q
(1)CAN总线时钟:
现将CAN总线倍频到800MHz,再10分频到80MHz。
CLOCK_SetRootMux(kCLOCK_RootFlexCan1, kCLOCK_FlexCanRootmuxSysPll1); // 设置CAN1总线时钟为800MHzCLOCK_SetRootDivider(kCLOCK_RootFlexCan1, 2U, 5U); // 分频因子为2*5=10,设置CAN1总线时钟为80MHz

- f) D7 ?9 p/ m* b: K2 n! P
(2)管脚配置:
选择CAN1的发送管脚为32脚,接收管脚为34脚。
IOMUXC_SetPinMux(IOMUXC_SAI2_TXC_CAN1_RX, 0U); // CAN1 RXIOMUXC_SetPinMux(IOMUXC_SAI2_RXC_CAN1_TX, 0U); // CAN1 TX
& [- S' k6 ~. k1 h7 X) ?) X2 T- i
(3)CAN波特率:
CAN-FD支持可变速率,即控制区和数据区的波特率可以不一致,控制区最大为1Mbit/s;数据区最大为8Mbit/s。后续程序根据总线时钟和设置的波特率,分配时段设置的seg1,seg2等数值。
pConfig->bitRate = 1000000U; // CAN-FD控制区波特率为1Mbit/spConfig->bitRateFD = 8000000U; // CAN-FD数据区波特率为8Mbit/s
" Z& Y0 _- y/ X1 j
(4)CAN-FD使能:
除了使能CAN-FD,可变波特率也需要使能,否则数据区的最大速率和控制区的速率一样,最大为1Mbit/s。
base->MCR |= CAN_MCR_FDEN_MASK; // CAN-FD使能fdctrl |= CAN_FDCTRL_FDRATE_MASK; // 可变波特率使能
. M2 |7 M" |: }
(5)关闭自回环:
如果开启了自回环,那么CAN1数据会在芯片内回环,不会到外部管脚,在程序调试时可以排除外部端子的干扰,但真实应用时,需要关闭自回环,从外部管脚收发数据。
pConfig->enableLoopBack = false; // 不回环,使用外部管脚, y3 O  O2 ]" S3 e' e9 c

; R, R* o& q& q" y6 t6 i
(6)帧格式:
本次我们使用11位标准数据帧,小伙伴也在后续试试扩展帧。需要设置自己的ID,便于总线上其他设备识别。
mbConfig.format = kFLEXCAN_FrameFormatStandard; // 11位标准帧,非扩展帧mbConfig.type = kFLEXCAN_FrameTypeData; // 数据帧 非远程帧mbConfig.id = FLEXCAN_ID_STD(rxIdentifier); // 帧ID 用于区别总线中不同的设备, s- m, g$ A2 j2 m% V+ M4 W6 E
(7)接收过滤:
用户可设置接收过滤规则,这样就可以只接收特定帧ID的数据,减少应用处理的数据量。
rxIdentifier = 0;FLEXCAN_SetRxMbGlobalMask(EXAMPLE_CAN, FLEXCAN_RX_MB_STD_MASK(rxIdentifier, 0, 0));//接收所有ID数据
+ w/ i' w- ?3 }5 b  C" H
2. CAN-FD收发流程
本次测试M核做主站,CAN1先发送一帧包含64字节数据,A核CAN2收到,将64字节数据再次发送,M核CAN1接收。对比发送和接收的64字节数据是否一致。重复100次。
* a' H1 @! L/ ~' ]
(1)CAN-FD发送数据:
EXAMPLE_CAN表示为CAN1,flexcanHandle为CAN实例,包含了发送接收回调函数,txXfer为要发送的64字节数据。
FLEXCAN_TransfeRFDSendNonBlocking(EXAMPLE_CAN, &flexcanHandle, &txXfer); // CAN-FD发送数据
6 R/ T) ^# X, G* n8 A
(2)CAN-FD接收数据:
EXAMPLE_CAN表示为CAN1,flexcanHandle为CAN实例,包含了发送接收回调函数,rxXfer为接收的64字节数据。
FLEXCAN_TransferFDReceiveNonBlocking(EXAMPLE_CAN, &flexcanHandle, &rxXfer); // CAN-FD接收函数
+ b- [; ?$ O; V( {
(3)接收和发送数据对比:
for (j = 0U; j <= DLC; j++) // 对比收发数据,不一致打印  {    if(txXfer.framefd->dataWord[j] != rxXfer.framefd->dataWord[j])      {          LOG_INFO("Data mismatch !!! j=%d \r\n",j);      }  }
2 L3 [! n' {) G( @; n2 M. h5 [( F$ ^( ]& N1 N* N- e. P! L7 ]

& I6 C+ U6 u8 O) C+ @- q. `% k二、A核CAN-FD
A核设备树中保留CAN2,内核解析设备树在 /dev下生成can0。设置波特率后使能can0节点,应用程序中open函数打开接口,write函数发送数据,read函数接收数据。我们把CAN接口的示例已经作为一个跨平台的综合演示程序,小伙伴们可以直接加参数调用即可。
/ E( k* ]6 x) t' R* [" S
1. 分配节点
(1)M核独享CAN1,A核独享CAN2,修改设备树,在设备树OK8MP-C.dts中,删除CAN1设备节点,保留CAN2设备节点。编译新的设备树;

! y3 |# K; Z' a3 s* f  O1 |  M) D
(2)将生成的OK8MP-C.dtb和Image拷贝至开发板的 /run/media/mmcblk2p1/ 目录下,输入sync命令同步后重启开发板;

# n0 M- j4 t- f
(3)通过A核串口输入命令uname -r ,显示内核版本,将 /lib/modbule目录下文件夹名称改为内核版本,这样才能自动加载模块生成can0节点,重启开发板。

7 a! u/ ]5 z& q

: S& `0 ?  `2 v7 U
8 J" L3 O- M" u$ f+ D. `
. r1 l( r6 Z6 p; n- h+ a9 D

9 k, }3 j8 s1 O% S5 a6 L, k- W
2. 演示Demo
进程名can_demo
使用方法:./can_demo设备名 [参数选项]… …
2 t4 Y+ Q" _3 ?' C; T, ]

" ]5 J" u) {" N. |6 s' x! F, J7 y% \8 `2 C2 h0 f; C$ Y& P
本次测试接口为can0(对应开发板CAN2),控制区波特率为1Mbit/s,数据区最大为8Mbit/s,11位标准帧,不过滤帧ID,不主动发数据,不回环。因此命令为:
./can_demo can0-b 1000 -fd 8000
* K  `+ y! f& b# ?* V  c
三、程序验证
4 J; d' l) q( n& i
1. 硬件连接
使用杜邦线将CAN1和CAN2的can-H短接,同时将can-L短接,注意不要接反。
# g9 {6 `9 L" H* o9 l3 I* T7 r

# K2 B' A* C  a* t& N$ A5 E/ t
2. M核程序
修改uboot环境变量设置M核自启动,同时将M核程序forlinx_m7_tcm_firmware.bin;
放到/run/media/mmcblk2p1/目录下。详细操作可看上篇文章【玩转多核异构】M核程序的启动、编写和仿真——飞凌嵌入式

# o7 D. c! ~7 P3 r; D
3. A核程序
(1)使用串口Xmodem,网络FTP,SCP,U盘,TF卡等多种方式,将can_demo从电脑拷贝至核心板默认目录下,输入以下命令修改权限;
chmod 777 can_demo
! _- b! }, c- D
(2)输入以下命令,A核应用程序can_demo将设置波特率后打开can0节点,等待M核发送的数据,再将接收的数据通过CAN2发送给M核。
./can_demo can0 -b 1000 -fd 8000

, r# \$ p, {8 P& X
4. 实际测试
(1)OKMX8MP-C开发板重新上电后,M核程序启动,完成CAN1初始化后,在M核调试串口输出信息,等待按键;
+ a+ r4 I6 P. ~  ?% N3 G: F
(2)在A核调试串口输入以下命令,CAN2将处于接收的状态:
./can_demo can0 -b 1000 -fd 8000

: u- @  ~; F1 l+ w% t# k& E
(3)在M核串口按下键A或a,M核CAN1发送64字节数据,A核CAN2接收数据,并将接收的数据再次发送,M核CAN1接收后和发送数据对比,输出结果。循环100次;

7 ^* {7 u1 O3 R
(4)通过测试可以看到,依托i.MX8M Plus强大的性能,双核都以8Mbit/s的高速率发送大量数据,均没有出现异常。

  v- L( N+ r: w  `1 J& s/ h2 Q6 P2 x4 X+ O# J- S
以上就是小编为小伙伴带来的基于飞凌嵌入式OKMX8MP-C开发板双核控制CAN-FD的使用方法了,是不是感觉性能很强大呢?

$ x# {1 }1 h( p+ X5 ?
# T& f/ Z6 a& u" e

该用户从未签到

2#
发表于 2023-2-17 13:57 | 只看该作者
通信系统为控制站与控制站之间、控制器与工程师站/SOE工作站之间提供可靠的高速数据传送,传送速率应不小于100MB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-23 20:57 , Processed in 0.140625 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表