找回密码
 注册
关于网站域名变更的通知
查看: 267|回复: 1
打印 上一主题 下一主题

ARM开发中最常见的C语言技巧

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2021-10-27 11:24 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
指针不光能指向变量、字符串、数组,还能够指向函数。在C语言中允许将函数的入口地址赋值给指针。这样就可以通过指针来访问函数。
还可以把函数指针当成参数来传递。函数指针可以简化代码,减少修改代码时的工作量。通过接下来的讲解大家会体会到这一点的。

" n2 \% D/ U, U4 U5 [% {9 J' }2 z
9 G5 X3 Q! y5 |, u. W9 `9 l5 C. ^  |5 k

( A9 c( P3 r* T$ l) s6 Y
    - {/ l% O: z3 [4 Z% ^7 ^4 x* D) J
  • /*函数指针简单讲解
  • *通过指向函数的指
  • *针调用比较两个数
  • *大小的程序
  • */
  • #include
  • using namespace std;
  • /*比较函数声明*/
  • int max(int,int);
  • /*指向函数的指针声明(此刻指针未指向任何一个函数)*/
  • int (*test)(int,int);
  • int main(int argc,char* argv[])
  • {
  •   int largernumber;
  • /*将max函数的入口地址赋值给
  • *函数指针test
  • */
  •   test=max;
  • /*通过指针test调用函数max实
  • *现比较大小
  • */
  •   largernumber=(*test)(1,2);
  •   cout<endl;
  •   return 0;      
  • }
  • int max(int a,int b)
  • {
  •    return (a>b?a:b);  
  • }
    & @2 [% }$ o: l( p5 e" a2 {$ c

; y6 Z7 @, }0 m3 b

" ?$ c) x# m: a+ ^- e- J( I( b
  j' d4 O0 {/ O; q. l! g% B/ [
" @4 F) ?* O' d7 r% E) w
5 u4 d' i4 N$ Y4 R3 M7 @( `  E2 m
通过注释大家应该很容易理解,函数指针其实和变量指针、字符串指针差不多的。如果大家理解了这个小程序,那么理解起下面这个有关Nand flash的源代码就好多了。* T) r( A+ H5 Z3 M5 M1 V

4 d& q- \3 X$ Z0 e2 z  W( a
2 [" `8 z0 U" V. Q% A
! }- e) v! i2 g. T7 T
    " b  X+ m& t# j1 d6 `5 Q7 C! d
  • typedef struct {
  •     void (*nand_reset)(void);
  •     void (*wait_idle)(void);
  •     void (*nand_select_chip)(void);
  •     void (*nand_deselect_chip)(void);
  •     void (*write_cmd)(int cmd);
  •     void (*write_addr)(unsigned int addr);
  •     unsigned char (*read_data)(void);
  • }t_nand_chip;
  • static t_nand_chip nand_chip;
  • /* NAND Flash操作的总入口, 它们将调用S3C2410或S3C2440的相应函数 */
  • static void nand_reset(void);
  • static void wait_idle(void);
  • static void nand_select_chip(void);
  • static void nand_deselect_chip(void);
  • static void write_cmd(int cmd);
  • static void write_addr(unsigned int addr);
  • static unsigned char read_data(void);
  • /* S3C2410的NAND Flash处理函数 */
  • static void s3c2410_nand_reset(void);
  • static void s3c2410_wait_idle(void);
  • static void s3c2410_nand_select_chip(void);
  • static void s3c2410_nand_deselect_chip(void);
  • static void s3c2410_write_cmd(int cmd);
  • static void s3c2410_write_addr(unsigned int addr);
  • static unsigned char s3c2410_read_data();
  • /* S3C2440的NAND Flash处理函数 */
  • static void s3c2440_nand_reset(void);
  • static void s3c2440_wait_idle(void);
  • static void s3c2440_nand_select_chip(void);
  • static void s3c2440_nand_deselect_chip(void);
  • static void s3c2440_write_cmd(int cmd);
  • static void s3c2440_write_addr(unsigned int addr);
  • static unsigned char s3c2440_read_data(void);
  • /* 初始化NAND Flash */
  • void nand_init(void)
  • {
  • #define TACLS   0
  • #define TWRPH0  3
  • #define TWRPH1  0
  •     /* 判断是S3C2410还是S3C2440 */
  •     if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
  •     {
  •         nand_chip.nand_reset         = s3c2410_nand_reset;
  •         nand_chip.wait_idle          = s3c2410_wait_idle;
  •         nand_chip.nand_select_chip   = s3c2410_nand_select_chip;
  •         nand_chip.nand_deselect_chip = s3c2410_nand_deselect_chip;
  •         nand_chip.write_cmd          = s3c2410_write_cmd;
  •         nand_chip.write_addr         = s3c2410_write_addr;
  •         nand_chip.read_data          = s3c2410_read_data;
  •         /* 使能NAND Flash控制器, 初始化ECC, 禁止片选, 设置时序 */
  •         s3c2410nand->NFCONF = (1<<15)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0);
  •     }
  •     else
  •     {
  •         nand_chip.nand_reset         = s3c2440_nand_reset;
  •         nand_chip.wait_idle          = s3c2440_wait_idle;
  •         nand_chip.nand_select_chip   = s3c2440_nand_select_chip;
  •         nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
  •         nand_chip.write_cmd          = s3c2440_write_cmd;
  • #ifdef LARGER_NAND_PAGE
  •         nand_chip.write_addr         = s3c2440_write_addr_lp;
  • #else
  •         nand_chip.write_addr         = s3c2440_write_addr;
  • #endif
  •         nand_chip.read_data          = s3c2440_read_data;
  •         /* 设置时序 */
  •         s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
  •         /* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
  •         s3c2440nand->NFCONT = (1<<4)|(1<<1)|(1<<0);
  •     }
  •    
  •     /* 复位NAND Flash */
  •     nand_reset();
  • }
    ; _2 a- H! p- }, d5 E6 c3 S
" g; d& S% D/ Q6 C, g2 w) I
# g# p" t2 L: F6 v) ^

! }9 U, x" s! A# \1 C
! S+ Z5 W& f1 W6 l( V
; t2 q" J! S- t' t5 F8 |( L4 Z
这段代码是用于操作Nand Flash的一段源代码。首先我们看到开始定义了一个结构体,里面放置的全是函数指针。他们等待被赋值。然后是定义了一个这种结构体的变量nand_chip。
8 g2 c  }1 a2 T/ j  N$ L! k+ L
! ~2 |0 D& [& X; f9 ]

. ?2 u; g1 x& i: T4 c- N) w然后是即将操作的函数声明。这些函数将会被其他文件的函数调用。因为在这些函数里一般都只有一条语句,就是调用结构体的函数指针。接着往下看,是针对两种架构的函数声明。然后在nand_init函数中对nand_chip进行赋值,这也就是我们刚刚讲过的,将函数的入口地址赋值给指针。
& z# }) V: Q- k. E! R" o. X
' i% Y1 h! B: Z" Q0 g  s1 J

# g3 G# ]- y! X; T# n现在nand_chip已经被赋值了。如果我们要对Nand进行读写操作,我们只需调用nand_chip.read_data()或者nand_chip.write_cmd()等等函数。这是比较方便的一点,另一点,此代码具有很强的移植性,如果我们又用到了一种芯片,我们就不需要改变整篇代码,只需在nand_init函数中增加对新的芯片的判断,然后给nand_chip赋值即可。所以我说函数指针会使代码具有可移植性,易修改性。
4 F( U  a  [, j/ J9 s2 B
7 r/ O' c+ d% ^" Q3 Z3 Z9 N4 ?! R$ X$ h; y: \$ R

& y# k* T- e, w+ k4 c' [
4 y- b' j: e5 T& q" I7 V
+ ~9 e. }) n$ }- w4 V& U
2.C语言操作寄存器$ |# D1 w; G; w( x
嵌入式开发中,常常要操作寄存器,对寄存器进行写入,读出等等操作。每个寄存器都有自己固有的地址,通过C语言访问这些地址就变得尤为重要。% D0 v5 F$ U2 R1 M
* R4 m* t6 O% A, J+ t& W

/ w  n9 ]8 x" x  \( L5 k+ B2 _#define GSTATUS1        (*(volatile unsigned int *)0x560000B0)* J! g) H* u9 E) }
在这里,我们举一个例子。这是一个状态寄存器的宏定义。首先,通过unsigned int我们能够知道,该寄存器是32位的。因为要避免程序执行过程中直接从cache中读取数据,所以用volatile进行修饰。
% Z" }3 s! a( g) e
$ a, ]5 B, B6 c, G
8 Z) a( q0 F/ U/ R+ q
每次都要重新读取该地址上的值。首先(volatile unsigned int*)是一个指针,我们就假设它为p吧。它存储的地址就是后面的0x560000B0,然后取这个地址的值,也就是p,所以源代码变成了((volatile unsigned int *)0x560000B0),接下来我们就能直接赋值给GSTATUS1来改变地址0x560000B0上存储的值了。
$ R1 O4 F; [: x
- O5 a* L: m1 f- V2 u7 M3 i% ?7 Y5 W9 ~. Z
8 b7 ?+ d7 \: M1 t
7 M& O0 @  ~* u' t8 A+ O/ C

    ' s4 t; R) R1 K3 b  C
  • /* NAND FLASH (see S3C2410 manual chapter 6) */
  • typedef struct {
  •     S3C24X0_REG32   NFCONF;
  •     S3C24X0_REG32   NFCMD;
  •     S3C24X0_REG32   NFADDR;
  •     S3C24X0_REG32   NFDATA;
  •     S3C24X0_REG32   NFSTAT;
  •     S3C24X0_REG32   NFECC;
  • } S3C2410_NAND;
  • static S3C2410_NAND * s3c2410nand = (S3C2410_NAND *)0x4e000000;
  • volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFSTAT;) o" t: d, u) W, ]% G

2 H7 {6 {8 E  D. r8 {% }/ u

- P; }0 F9 ~4 U7 t, B7 @6 M" U; f4 {- ?" p( u' ]7 t3 _+ e* B
' }7 @4 S( D% y0 e

  P$ j/ k7 Q& @+ S有时候,你会看到这样一种情况的赋值。其实这和我们刚刚讲过的差不多。只不过这里是在定义了指针的同时对指针进行赋值。这里首先定义了结构体S3C2410_NAND,里面全部是32位的变量。4 c8 C9 u9 d3 v. C
7 f8 }6 z7 J) E

1 R+ Z7 D8 ?, q2 e, W/ P! Z3 S又定义了这种结构体类型的指针,且指向0x4e000000这个地址,也就是此刻s3c2410nand指向了一个实际存在的物理地址。s3c2410nand指针访问了NFSTAT变量,但我们要的是它的地址,而不是它地址上的值。所以用&取NFSTAT地址,这样再强制转换为unsigned char型的指针,赋给p,就可以直接通过p来给NFSTAT赋值了。
) k: N1 d  b; h% r0 M% Z, n) Q
2 g/ `: T+ w5 B1 w2 S

, x% e$ Z1 Y! h) b; d3.寄存器位操作0 N) k2 {) o, P- ~5 m$ {, F8 V

+ c$ I; v1 E: F9 V
$ W) g  l$ u% Q3 @& f) d, y3 N; }) q" r; \3 t
    . q! L2 z/ O& D$ U1 u( p
  • #define GPFCON      (*(volatile unsigned long *)0x56000050)
  • GPFCON &=~ (0x1<<3);
  • GPFCON |= (0x1<<3);0 Q0 F/ x' b. a8 j$ u# {
+ R, s4 n! B$ w6 x! g
* `: r* o$ H3 Q: _: w

$ u6 G0 u9 M+ }( |6 @1 y
9 M' [) y% h0 e/ E/ j

; O8 w/ c; f0 O结合我们刚刚所讲的,首先宏定义寄存器,这样我们能够直接给它赋值。位操作中,我们要学会程序第2行中的,给目标位清0,这里是给bit3清0。第3行则是给bit3置1。
: M6 f' l# L& H

该用户从未签到

2#
发表于 2021-10-27 13:49 | 只看该作者
在C语言中允许将函数的入口地址赋值给指针
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-23 23:51 , Processed in 0.156250 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表