EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 piday123 于 2021-1-28 10:25 编辑
: t, J$ [7 D; B% z9 C# b% M! y) j9 F
目录- 总述
- 函数说明
- 应用举例
- 函数实现
7 @0 Z( |: ^% {4 t' i
- G' y0 k$ e7 q& ^6 K( l
, n1 q7 Y! Z- |1 g7 z3 a总述, D6 y' }% w; j# v, T) ?$ D9 Z
如果已知函数表达式,可以通过diff()函数求取各阶导数解析解的方法,并得出结论,高达100阶的导数也可以用MATLAB语言在几秒钟的时间内直接求出。 3 V) E; }6 f0 w% M
如果函数表达式未知,只有实验数据,在实际应用中经常也有求导的要求,这样的问题就不能用前面的方法获得问题的解析解。要求解这样的问题,需要引入数值算法得出所需问题的解。由于在MATLAB语言中没有现成的数值微分函数,所以本文将介绍一种数值微分算法——中心差分方法。 9 ]( r5 L: w% O; \) \
函数说明, e l: B8 J" u1 O% X- F$ [
2 _7 o- E2 n2 }3 R* g+ E; z
- function [dy,dx] = diff_ctr(y,Dt,n)
- %diff_ctr
- %中心差分算法实现数值微分
- % 调用格式:
- % [d_y, d_x] = diff_ctr(y,Dt,n)
- % 其中,y为给定的等间距的实测数据构成的向量, Dt为自变量的间距,n为所需的导数阶次。
- % 向量d_y为得出的导数向量, 而d_x为相应的自变量向量。注意这两个向量的长度比y短。
- %
- % Examples:
- % 求函数y=sin(x)/(x^2+4*x+3)的1~4阶导数
- % MATLAB求解语句:
- % h=0.05; x=0:h:pi; syms x1;
- % f=sin(x1)/(x1^2+4*x1+3); y=subs(f,x1,x);
- % [y1,dx1]=diff_ctr(y,h,1); subplot(221), plot(dx1,y1);
- % [y2,dx2]=diff_ctr(y,h,2); subplot(222), plot(dx2,y2);
- % [y3,dx3]=diff_ctr(y,h,3); subplot(223), plot(dx3,y3);
- % [y4,dx4]=diff_ctr(y,h,4); subplot(224), plot(dx4,y4);
- % 与解析解对比验证:
- % syms x1;
- % f=sin(x1)/(x1^2+4*x1+3);
- % yy1=diff(f); f1=subs(yy1,x1,x);
- % yy2=diff(yy1); f2=subs(yy2,x1,x);
- % yy3=diff(yy2); f3=subs(yy3,x1,x);
- % yy4=diff(yy3); f4=subs(yy4,x1,x);
- % % 求四阶导数向量的范数(相对误差):
- % norm(double((y4-f4(4:60))./f4(4:60)))
( a# s1 n) M( |1 x. t/ g $ w" Y+ T" X2 P
& n8 y; U$ j/ A; X+ u/ l) e% y8 I) K# E4 ?
应用举例问题: 求函数
的1~4阶导数, 并验证误差。
& {4 |* R; T9 ?3 B& U! q代码如下:
v/ i% U6 m8 U& q- % // 输入函数,并求解析解,并代入x向量得出精确解。
- h=0.05; x=0:h:pi; syms x1;
- f=sin(x1)/(x1^2+4*x1+3);
- yy1=diff(f); f1=subs(yy1,x1,x);
- yy2=diff(yy1); f2=subs(yy2,x1,x);
- yy3=diff(yy2); f3=subs(yy3,x1,x);
- yy4=diff(yy3); f4=subs(yy4,x1,x);
- %// 比较不同阶的导数
- y=subs(f,x1,x);
- [y1,dx1]=diff_ctr(y,h,1); subplot(221), plot(x,f1,dx1,y1,':');
- [y2,dx2]=diff_ctr(y,h,2); subplot(222), plot(x,f2,dx2,y2,':');
- [y3,dx3]=diff_ctr(y,h,3); subplot(223), plot(x,f3,dx3,y3,':');
- [y4,dx4]=diff_ctr(y,h,4); subplot(224), plot(x,f4,dx4,y4,':')
- %// 定量分析误差
- norm(double((y4-f4(4:60))./f4(4:60)))
/ p, x: \0 w3 x% c! A- m
8 M( n( n( Q, Q6 K# k- T: h2 r
: t3 u' K7 y; e3 r: L1 e
1 y) c7 Q( e7 m' t6 A% r# M不同阶的导数图像如下: ! ^5 s3 @6 y4 X/ O
, G# M$ V/ ^& F7 P1 l( E$ y定量地分析误差时, 考虑到计算得出的4阶导数向量, 其长度比原始对照向量f4短, 所以两个向量取同样多点进行比较, 就可以得出数值方法的相对误差最大值为
, 亦即0.035%。 由此可见, 这里的数值方法还是很精确的。 0 L. }# F* J+ O) w
函数实现
$ d& M# d. f) a& |& [$ V! D2 d, c y5 h0 m% r0 z8 A
- function [dy,dx = diff_ctr(y,Dt,n)
- y1=[y 0 0 0 0 0 0;
- y2=[0 y 0 0 0 0 0;
- y3=[0 0 y 0 0 0 0;
- y4=[0 0 0 y 0 0 0;
- y5=[0 0 0 0 y 0 0;
- y6=[0 0 0 0 0 y 0;
- y7=[0 0 0 0 0 0 y;
- switch n
- case 1
- dy = (-y1+8*y2-8*y4+y5)/12/Dt;
- case 2
- dy = (-y1+16*y2-30*y3+16*y4-y5)/12/Dt^2;
- case 3
- dy = (-y1+8*y2-13*y3+13*y5-8*y6+y7)/8/Dt^3;
- case 4
- dy = (-y1+12*y2-39*y3+56*y4-39*y5+12*y6-y7)/6/Dt^4;
- end
- dy = dy(5+2*(n>2):end-4-2*(n>2));
- dx = ([2:length(dy)+1+(n>2))*Dt; \$ m0 X. ?; N
2 D, w9 o) E, |( c% T
; y! ]) x* [8 \( ^0 d( `+ \9 z% n: N0 H) C x2 Z1 t0 ]. |, Q6 _' @
|