|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
4 \! c# M0 f' qPSO进行进行特征选择其主要思想是:将子集的选择看作是一个搜索寻优问题(wrapper方法),生成不同的组合,对组合进行评价,再与其他的组合进行比较。这样就将子集的选择看作是一个是一个优化问题。
& W, v0 S2 I9 b4 E" S/ s; p( m6 f2 q
下面是PSO进行特征选择的代码(注意:整体代码是单目标只优化错误率,注意训练使用的是林志仁SVM,数据集是Parkinson,可以到UCI上下载,训练的结果是错误率), \1 z/ n8 d' ~
% H" B# D% S- l2 n4 g$ l
数据集分割为训练集和测试集:2 C& w# H6 x. {, e/ w
# R. j1 K0 P+ K, f1 d. f
- function divide_datasets
- load Parkinson.mat;
- dataMat=Parkinson_f;
- len=size(dataMat,1);
- %归一化
- maxV = max(dataMat);
- minV = min(dataMat);
- range = maxV-minV;
- newdataMat = (dataMat-repmat(minV,[len,1]))./(repmat(range,[len,1]));
- Indices = crossvalind('Kfold', length(Parkinson_label), 10);
- site = find(Indices==1|Indices==2|Indices==3);
- train_F = newdataMat(site,:);
- train_L = Parkinson_label(site);
- site2 = find(Indices~=1&Indices~=2&Indices~=3);
- test_F = newdataMat(site2,:);
- test_L =Parkinson_label(site2);
- save train_F train_F;
- save train_L train_L;
- save test_F test_F;
- save test_L test_L;
- end: L0 \" @. K: o& T9 `* ^ J
$ V5 E5 N$ p k0 }/ E- \ Y2 R; ?( M
主函数PSOFS:
( ~; |. T9 M9 W7 c9 ?4 `; l! {) f- V! m, r& J) v5 s: ?: i
- clear;
- clc;
- format long;
- %------给定初始化条件----------------------------------------------
- c1=2; %学习因子1
- c2=2; %学习因子2
- w=0.7; %惯性权重
- MaxDT=100; %最大迭代次数
- D=22; %搜索空间维数(未知数个数)
- M=30; %初始化群体个体数目
- bound=1;
- %eps=10^(-6); %设置精度(在已知最小值时候用)
- global answer %最后所有粒子的结果(包括特征与精确度)
- answer=cell(M,3);
- global choice %选出的特征个数
- choice=0.8;
- %------初始化种群的个体(可以在这里限定位置和速度的范围)------------
- x=randn(M,D); %随机初始化位置
- v=randn(M,D); %随机初始化速度
- x(x>bound)=bound;
- x(x<-bound)=-bound;
- %------先计算各个粒子的适应度,并初始化p(i)和gbest--------------------
- divide_datasets();
- for i=1:M
- p(i)=fitness(x(i,:),i);
- y(i,:)=x(i,:);
- end
- gbest=x(1,:); %gbest为全局最优
- for i=2:M
- if(fitness(x(i,:),i)<fitness(gbest,i))
- gbest=x(i,:);
- end
- end
- %------进入主要循环,按照公式依次迭代,直到满足精度要求------------
- for t=1:MaxDT
- for i=1:M
- v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(gbest-x(i,:));
- x(i,:)=x(i,:)+v(i,:);
- if fitness(x(i,:),D)<p(i)
- p(i)=fitness(x(i,:),i);
- y(i,:)=x(i,:);
- end
- if p(i)<fitness(gbest,i)
- gbest=y(i,:);
- end
- end
- end
- %------显示计算结果
- disp('*************************************************************')
- Solution=gbest';
- Result=fitness(gbest,i);
- disp('*************************************************************')$ R2 F7 {% g6 \$ z' @8 m7 I
/ {* O$ |. |8 T
% g2 c) L% T E: b3 h1 E5 H' e
特征选择评价函数(利用林志仁的SVM进行训练):+ M- I Y {8 z' Y' l0 f
$ r( O3 _! v. Y T- function error = fitness(x,i)
- global answer
- global choice
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- answer(i,1)={sum(inmodel(1,:))};
- model = libsvmtrain(train_L,train_F(:,inmodel), '-s 0 -t 2 -c 1.2 -g 2.8');
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model,'-q');
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
- answer(i,2)={error};
- answer(i,3)={inmodel};
- end
& j* Y* j d0 e9 [$ F9 E" T 3 L$ x0 w/ Q0 L& m- P
结果(选出的特征数和错误率):2 ?! B V0 b: N& f) E
; y$ r& U; k9 \' N' ]4 C6 ?! J
8 q& B9 }9 c5 W; @
|
|