EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
BP神经网络整定的PID控制算法matlab源程序,系统为二阶闭环系统。
0 z d3 i& V+ f%BP based PID Control clear all; close all;
9 I% q' [% F" z' Qxite=0.28; alfa=0.001;
# h9 i- }& b: d8 Z5 [, d4 Q7 t5 A# p9 X( y) z$ H+ D5 S
IN=4;H=5;Out=3; %NN Structure # C7 a# S# s* U0 e: B; N1 ]
U: V2 i3 s. `" Jwi=0.50*rands(H,IN); wi_1=wi;wi_2=wi;wi_3=wi; # I& T, g: F4 ? {% T
& @- F7 F, u0 Q3 h n6 d# ywo=0.50*rands(Out,H); wo_1=wo;wo_2=wo;wo_3=wo;
3 u3 ^. C) L9 b1 n m
' t1 i: n0 _! r0 @, O) Nx=[0,0,0]; u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; : ]" B7 w; I5 ]
Oh=zeros(H,1); %Output from NN middle layer I=Oh; %Input to NN middle layer error_2=0; error_1=0; 4 c) v% Q" p: ^
ts=0.01; sys=tf(2.6126,[1,3.201,2.7225]); %建立被控对象传递函数 dsys=c2d(sys,ts,'z'); %把传递函数离散化 [num,den]=tfdata(dsys,'v'); %离散化后提取分子、分母 for k=1:1:2000 time(k)=k*ts; rin(k)=40; yout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_2+num(3)*u_3;%这一步是怎么推的(问题1) error(k)=rin(k)-yout(k);
- q/ F3 c; h2 U! r2 c) Dxi=[rin(k),yout(k),error(k),1]; # z& |9 t0 w; @) Q
x(1)=error(k)-error_1; x(2)=error(k); x(3)=error(k)-2*error_1+error_2; ) y( s* B: ^9 I( E9 w
epid=[x(1);x(2);x(3)]; I=xi*wi'; for j=1:1:H Oh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer end K=wo*Oh; %Output Layer for l=1:1:Out K(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd end kp(k)=K(1);ki(k)=K(2);kd(k)=K(3); Kpid=[kp(k),ki(k),kd(k)];
3 L4 k7 w: N% i! fdu(k)=Kpid*epid; u(k)=u_1+du(k); if u(k)>=45 % Restricting the output of controller u(k)=45; end if u(k)<=-45 u(k)=-45; end & L: ~. H9 M' ]4 g
dyu(k)=sign((yout(k)-y_1)/(u(k)-u_1+0.0000001));
0 `9 ~- G+ F! T! a%Output layer for j=1:1:Out dK(j)=2/(exp(K(j))+exp(-K(j)))^2; end for l=1:1:Out delta3(l)=error(k)*dyu(k)*epid(l)*dK(l); end # L* g( t5 }8 Z# u: l* @
for l=1:1:Out for i=1:1:H d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2); end end wo=wo_1+d_wo+alfa*(wo_1-wo_2);%这一步似乎有问题(问题2) %Hidden layer for i=1:1:H dO(i)=4/(exp(I(i))+exp(-I(i)))^2; end segma=delta3*wo; for i=1:1:H delta2(i)=dO(i)*segma(i); end . M8 y2 D. @ l& a7 O, I" f2 w m
d_wi=xite*delta2'*xi; wi=wi_1+d_wi+alfa*(wi_1-wi_2); , p# Y+ F; s) D& ~, Z
%Parameters Update u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_2=y_1;y_1=yout(k); wo_3=wo_2; wo_2=wo_1; wo_1=wo; wi_3=wi_2; wi_2=wi_1; wi_1=wi; ; W$ G- I$ L; U* W9 g$ O* [
error_2=error_1; error_1=error(k); end figure(1); plot(time,rin,'r',time,yout,'b'); xlabel('time(s)');ylabel('rin,yout'); figure(2); plot(time,error,'r'); xlabel('time(s)');ylabel('error'); figure(3); plot(time,u,'r'); xlabel('time(s)');ylabel('u'); figure(4); subplot(311); plot(time,kp,'r'); xlabel('time(s)');ylabel('kp'); subplot(312); plot(time,ki,'g'); xlabel('time(s)');ylabel('ki'); subplot(313); plot(time,kd,'b'); xlabel('time(s)');ylabel('kd'); 问题(1)和问题(2)都标注出来了。还请各位帮忙看一下,尤其是问题(1),到底如何将已知的传递函数转换成,matlab的仿真模型呢 5 D: G2 l1 J' ?
|