找回密码
 注册
关于网站域名变更的通知
查看: 969|回复: 1
打印 上一主题 下一主题

索引超出矩阵维度怎么处理?

[复制链接]
  • TA的每日心情

    2019-11-19 15:34
  • 签到天数: 1 天

    [LV.1]初来乍到

    跳转到指定楼层
    1#
    发表于 2020-8-12 15:20 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

    EDA365欢迎您登录!

    您需要 登录 才可以下载或查看,没有帐号?注册

    x
    求解一个微分方程组,提示索引超出矩阵维度,但我看了好久也没找到哪里出问题了,请大神们帮帮忙。程序如下主程序:1 @6 I0 O+ N% a8 `- ^

    $ T8 i: |$ W) S! wclc) k# O7 l8 e# L  w% @( V* ~
    clear all;) ]; }" f. f: j8 |/ G: P
    close all;/ T3 a: m! f9 V& [
    9 f- s4 S' A- C; `
    tinit=0;                    % time min / initial time6 T3 R  z7 ~7 j" D$ H
    tmax=100;                   % time length
    3 l& n& N, ]/ c# l  pdt=0.01; % time interval
    9 b$ J% w: L" {1 sM=tmax/dt; % time points ! U  g0 j" R$ w  s
    tspan=linspace(tinit,M*dt,M+1);
    ! b, J' Q  O% _- h2 q4 u& |7 U  F; ?$ q! f9 m! b6 o5 Q
    K=100; %space points
    : b, U/ u$ W6 {: l* \I=zeros(K/2,1);
    2 s" [+ m$ I1 G8 i! Z, p  d2 nR=zeros(K/2,1);7 _% m2 a) \( R4 `; l
    T=zeros(1,1);; ?$ m7 w4 m  i( n* g* x0 Q
    V=zeros(1,1);
    ' K" H0 B  h8 k( t. |%S=zeros(1,1);% Q, a' j0 z, G7 b0 P1 B
    %I=zeros(1,1);5 @. X3 R9 p/ y7 i& _
    ! w# j" h2 F6 Q+ t
    s = 13;0 g/ I$ p6 t; M, I% X& }' I- l
    d = 1;  }9 @  k6 R7 z' V% Q
    beta =0.8;
    ! E0 l% s% d- [8 n& Uc=20;
    / [/ V, u5 E6 `* k" g  }es=0;%without treatment es=0% z' N. u- c. ~) Z  F
    ea=0;%without treatment ea=0" m/ o6 y8 `" i- t. i, p% ?6 `+ l- R  j
    kappa=1;%%without treatment kappa=11 w) k/ p1 b4 J% ~
    $ Q9 V3 J, m( j7 M5 _" I2 W
    I(1)=beta;
    ( u  H  I0 o% S4 e' s: ]i0=I;2 _* F% `! L$ M$ t' D& D. S" X
    R(K/2+1)=1; % gamma*I! _- s) _" |) B( N/ e8 C5 w% \
    r0=R;" a) @8 i/ A/ A
    %S(1)=S;
    3 N# B% T8 I4 f# d  N6 ht0=1;9 B8 e) N. S& A6 ~7 s; O0 g
    %I(1)=I;4 J7 h% ~& W# e. h
    v0=1;& g1 v6 x: {, H; ^

    * u6 g  N, C7 r1 b, ~aiinit=0.0;) U* l, S& W* L- e4 s
    aimax=84; % space length
    9 Z9 w- k, Y5 {dai=(aimax-aiinit)/K; %space interval/ O0 B9 I$ ?! {
    aispan=linspace(aiinit,aimax,K);+ E5 k1 n8 c9 _! v* u. T# T
    aispan=aispan.';
    2 Z9 U1 B; b1 p1 a4 g+ }, V$ y* D
    5 V% e& Z3 n, l3 }; i. roptions = odeset('RelTol', 1e-4, 'NonNegative', [1 2 3],'AbsTol', 1e-4, 'NonNegative', [1 2 3]);
    0 ]  T  w1 ?/ i  Z- k) Y9 ^[t,sir] = ode15s(@(t,sir)mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa),tspan,[i0' r0' t0 v0],options);
    ' X' S+ _. B0 a/ T  ~4 S# I$ D, b0 }! }1 `
    figure
    . D5 y4 n7 K- r; p" z! h3 _h1=suRF(aispan,t,sir(:,1:K/2));
    . v0 G- B0 M; j) ~: k) cset(h1,'LineStyle','none');
    + j+ b3 o$ @+ _! z( ?hold on3 ?4 E5 h, d1 P0 W7 n
    xlabel('Age (ai)')
    4 |7 f1 t% L. M3 \1 X8 O) L3 Y& Cylabel('Time (t)')
    ; z( n. B/ ^( o$ Zzlabel('I(ai,t)')
    6 C5 a. G. ]$ {1 K7 i4 n6 C1 s: F- w: u
    figure' i8 b8 O' x- r( Y% Q$ D  o
    h2=surf(aispan,t,sir(:,K/2+1:K));* G$ o) a# A6 S6 [
    set(h2,'LineStyle','none');
    9 e$ M( a% n8 h- O: l4 J9 nhold on4 o. T3 v4 [% P$ d+ @( w9 k5 Z+ ~0 p  i
    xlabel('Age (ai)'). ~/ a& a9 |( }* ^' S! F
    ylabel('Time (t)')- M9 }: _2 M9 ~# O: [2 K( t' K
    zlabel('R(ai,t)')0 J& `' p! W7 O; l! v1 U
      i1 K' e, d% G* {0 R( E
    figure; J7 K" W0 ?7 H/ B* s
    % R is matrix, sum(R,dimension) is a column vector containing sum of each row  }. ]) {! C1 t5 U) M
    plot(t,sum(sir(:,1:K/2),2),'Color',[0.5 0 0.9])" @& X4 }  G3 K# z
    hold on7 r" b' d6 h' u4 X) Q  V( l* B
    xlabel('Time (t)')  O( ^/ m' ^5 `- U. [- u0 c% }
    ylabel('I(t)')
    5 S, C# }" E6 |, U( _legend('Recovered')  b% N& f9 {- x  T# g" @9 i5 o
    5 f4 A& [' v; v8 c8 |, G
    figure
    ! {2 j, E& d, J$ n& F$ t% R is matrix, sum(R,dimension) is a column vector containing sum of each row
    ) Y/ @4 Y' g2 oplot(t,sum(sir(:,K/2+1:K),2),'Color',[0.5 0 0.9])
    : C: e+ v; e/ j) f, J( J# `* ^hold on
    / T1 l4 B4 }# j1 uxlabel('Time (t)')
    ! ^" O; D9 c( E3 l3 r" L; sylabel('R(t)')
    . D; h# ]2 K- x% @1 e/ N$ m; [legend('Recovered')0 ?1 f3 ?3 K9 p
    7 X% ?$ w) f% i$ A
    figure) b7 t7 j; W; k0 d1 n. E
    plot(t,sir(:,K+1),'Color',[0 0 1])
    ' F  [0 J1 y% Vhold on4 S* q" M- B, K+ `3 r# E+ d( p
    plot(t,sir(:,K+2))%,'Color',[1 0 0])( B, K) N/ a) ^$ \& @/ {- U/ i
    hold on
    & G; a) w6 ?+ U1 }# Q% R is matrix, sum(R,dimension) is a column vector containing sum of each row* n8 G. B! }8 @  |5 x
    plot(t,sum(sir(:,1:K/2),2),'Color',[0.5 0 0.9]);
    ! \' U, `. n6 q2 l" V' ghold on
    - V- E: {* l& r% i% d* _plot(t,sum(sir(:,K/2+1:K),2),'Color',[0.5 0 0.9])
    1 J& b6 B- w6 K& t4 E+ p: V9 etitle('Population vs Time'): Z/ W1 t; `, L+ _/ v" b; R
    xlabel('Time (t)')
    , }; ]) E- F$ _8 L9 M& Cylabel('Population')' t# K) f" e9 [5 X
    legend('Susceptible','Infected','Recovered')
    $ q1 h4 @+ Y; p5 A8 A5 B' Z2 m- @- S3 f4 H  p, ?

    + @1 L1 ]/ S: G% F& @3 d1 Y6 B/ r6 k2 N* N- Y; P$ c/ v, @
    函数:% P) Q6 k0 ^; s# n. w# T
    function dsir = mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa)
    $ p9 u- W; \& M5 Z5 k" q) t: g2 ?$ H  L; ~- T8 F8 G
    tau1=10;
    # P( x. I7 v- Z+ S2 wtau2=15;
    * z7 k6 g6 j- ttau3=25;5 v# h2 t& Z# w) f- q3 ]
    tau4=35;. O  }0 H) m4 r( q. t
    6 m2 r+ m4 @' h% u* ?) e0 l1 x4 ~' }9 ~
    %rho=@(a) 0.*(a<=tau2)+(0.01*(a-tau2).^2.*exp(-0.2*(a-tau2))).*(a>tau2);
    8 P# q% E! Y9 ^4 q9 t%delta=@(a) 0.*(a<=tau4)+(56^(-3)*(a-tau4).^2.*exp(-0.2*(a-tau4))).*(a>tau4);
    * e5 U# Q" k+ _1 v%mu=@(a) 0.*(a<=tau3)+(22^(-3)*(a-tau3).^2.*exp(-0.2*(a-tau3))).*(a>tau3);
    ; u  W! }3 h# s; w$ P- P%alpha=@(a) 0.*(a<=tau1)+(0.2*(a-tau1).^2.*exp(-0.2*(a-tau1))).*(a>tau1);8 {, s% v& \9 h! O+ _$ c
    0 L! B) k4 s6 H8 |) M: v0 C
    ai=(0:K)*dai;
    % E2 ^, S& @, S; @8 pai=ai ( : );# x% ~" T9 `8 \5 i( B7 r4 O
    rho=zeros(numel(ai));  
    4 j) O; ^$ @' Q# gdelta=zeros(numel(ai));  7 f( F" w) L) R3 F2 K7 D. T
    mu=zeros(numel(ai));  
    % g& f% e1 N( O- E; d# }5 x7 Dalpha=zeros(numel(ai));  
    / X. v7 |. r5 M/ r  ^- b0 v% G% e  I$ V1 w; l7 H. M; V  ^
    I=sir(1:K/2);
    + a  p6 j1 u9 t9 DR=sir(K/2+1:K);" n8 R- @" I8 Y5 A, t
    T=sir(K+1);
    - Y7 ~8 K' l% e9 I' i- TV=sir(K+2);
      U  _' S1 z3 p, k$ v2 p% }5 m7 E. R, N! a6 ?) X- s
    dIda=zeros(K/2,1);. I4 ~  M: o% e  T5 Y' U* y6 l
    dRda=zeros(K/2,1);* A+ x2 U( ^! k% a
    for j=1:K8 r0 H$ ?' m" p6 a9 y4 p6 d2 N
        if (ai(j)<=tau2)
    & h# _9 A3 _) V. D8 D4 c        rho(j)=0;
    ; D6 x! \8 @  o/ w5 `    else( U, U4 Y& w" O3 B, Y( R2 r2 {4 Q# ]. i
            rho(j)=0.01*(ai(j)-tau2)^2*exp(-0.2*(ai(j)-tau2));
    : P0 V, [& Q4 A: g    end' M, b4 I7 s2 m8 c
        if (ai(j)<=tau4)) w+ N4 M. \$ d# S
            delta(j)=0;
    & u  W$ O1 Q- ^. t5 ^/ }$ c( B    else
    . a/ g% W9 a5 m1 ]* `; G7 q! |        delta(j)=56^(-3)*(ai(j)-tau4)^2*exp(-0.2*(ai(j)-tau4));
    5 X( z* u( ]0 _0 }8 |" B2 p0 Z    end1 Q) T; {0 Q5 ~" _9 j1 d. B; E0 Y# g
        if (ai(j)<=tau3)
      k. _8 Y4 y+ m, A3 D2 o        mu(j)=0;. s! m* G7 o& ]: P, P6 y
        else( l' p8 ~; L  D3 U9 E. w4 f* D1 {
            mu(j)=22^(-3)*(ai(j)-tau3)^2*exp(-0.2*(ai(j)-tau3));5 D0 u1 r+ X/ l
        end
    * F5 ^' f. Z2 I7 X4 Q: h2 J/ d    if (ai(j)<=tau1)+ P% x- J8 w% J! o8 E' o
            alpha(j)=0;
    : Y* D* P" g0 v3 n5 t    else
    2 {! v3 ?6 X, Y& `" f6 C        alpha(j)=0.2*(ai(j)-tau1)^2*exp(-0.2*(ai(j)-tau1));+ ^, ~- m8 b+ U+ [% k+ H$ p& P' q
        end
      L3 K3 X: {" E4 o! J4 {* z% B6 t+ h$ ?end4 Y2 @: N  [4 {6 r' G% W6 h: f2 ]- `

    7 m9 ~9 F. a0 O; ofor j=1:K/2
    " N0 J7 ^0 H$ N3 t    if(j==1)! Y& Z( I' _: k( F5 x
            dIda(j)=beta*V*T; , ~) u! c  ^& b; \$ N
        else
    3 y( ?. ~& \8 B+ E; c6 [% V        dIda(j)=-1*(I(j)-I(j-1))/(aispan(j)-aispan(j-1))...+ K% _, Y8 i: H; |# M& l, c
               -delta(j-1)*I(j-1);  , o7 L" |5 g; }$ V$ f
        end
    # k% ?1 O6 A! D6 cend
    " r- P, e0 m4 N( R! W( U& v* R5 t' A& O9 a8 A
    for j=K/2+1:K, F" \# S. {$ Y4 I9 D2 l
       if(j==K/2+1)5 b) z& D& v0 c0 g
            dRda(j)=1;    % R(0,t)=gamma*I;. F% R( g" l: u6 @
       else
    ) w2 ~7 a( \" C1 m  J* S+ \        dRda(j)=-1*(R(j)-R(j-1))/(aispan(j)-aispan(j-1))...
    ! a3 l4 m1 x' E            +(1-ea)*alpha(j-1)-((1-es)*rho(j-1)+kappa*mu(j-1))*R(j-1);
    / R& k5 C; g4 N* Z1 h: G( P5 d0 B    end
    / Q/ u( c5 @: O0 send
    5 L- X6 V5 Z0 i
    # o. f* ]$ {2 j; Q. o6 @ai_centered = (ai(1:numel(ai)-1)+ai(2:numel(ai)))/2.0; - Z4 r& A8 \- \9 g' C; p! k
    value_integral = trapz(ai_centered,I.*R.*rho(ai_centered));8 M9 D2 Z' a5 M) l8 q7 y
    dTdt = s-d*T-beta*V*T;            % S=-beta*S*I;
    & x) P: o+ y9 j# p9 u3 U! adVdt = (1-es)*value_integral-c*V;     % I=beta*S*I-gamma*I;
    0 N5 Y  l7 _6 y* ?1 f0 d" C* X3 g: ~
    5 i8 Y8 y: b, _6 U8 odsir = [dIda;dRda;dTdt;dVdt];" f2 `' I. q& P& d- y7 a
    ' J% q: E' Y. ]
    end% f8 {; `6 g9 v3 q7 r; I
    # S$ S: x9 F  H: T3 P$ @- n& X
    一运行就报错:
    + V5 g7 n4 D  v2 Z, ~索引超出矩阵维度。
    - E( |& z+ ^' t
    % x2 \: i, q9 ~' Q- H7 \2 \出错 mytest (line 63)
    " X1 J( t9 B& l: ^/ k' v* ?8 A+ E        dRda(j)=-1*(R(j)-R(j-1))/(aispan(j)-aispan(j-1))...
    0 n0 \0 v; k7 q: p1 E3 c$ S# w- h5 \( U1 X& u" a, I3 P6 T
    出错 maintest>@(t,sir)mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa)+ K2 i* ?! J6 [
    " b/ _' \+ \0 O) A. Q, Z9 t  T
    出错 odearguments (line 90)
    ' \, {- h  X3 r# u/ Mf0 = feval(ode,t0,y0,args{:});   % ODE15I sets args{1} to yp0.
    # c: ]* y+ q4 b- Z2 K) Z
    1 w4 f: W+ {+ i$ _出错 ode15s (line 150)
    5 ?& o2 B9 ]( G7 J$ a7 ^7 C/ f+ I    odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);: a; _+ D  V: G5 P0 Y1 Z) S

    3 r3 q- L1 \3 e9 ?出错 maintest (line 43)
    9 J* c7 t4 q9 M' D: g% S[t,sir] = ode15s(@(t,sir)mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa),tspan,[i0' r0' t0 v0],options);% H5 J9 X' J0 Q  f2 ~& ^
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-24 20:05 , Processed in 0.156250 second(s), 24 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表