|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
- d d g$ `. Y& zRBF_cluster:
5 B; U0 l2 s5 E2 A g/ j. q9 @
7 h" A* i2 b2 p8 o. ]" D! X+ B6 I+ b7 I* c
% 1.基于聚类的RBF 网设计算法 3 \" i6 S. b$ k# T4 R* m
% 一维输入,一维输出,逼近效果很好!
8 i5 D% K5 s$ \4 s" VSamNum = 100; % 总样本数 $ L* F/ u3 X+ Z! ~5 m! v
TestSamNum = 101; % 测试样本数 - K! o0 T2 D' ~6 n5 \* C
InDim = 1; % 样本输入维数
; h% H5 S( D4 e$ Q" E) e, t% RClusterNum = 10; % 隐节点数,即聚类样本数
5 \+ }2 @- B3 _Overlap = 1.0; % 隐节点重叠系数
# k. Y; W. e+ j9 f4 [' x0 g! w1 l+ R$ s* }
% 根据目标函数获得样本输入输出 2 H2 c) S! r. _) |+ t# ]! n
rand('state',sum(100*clock))
, `6 l8 t) R% I" v" |7 Z* {" tNoiseVar = 0.1; - T& R- V' Y! C* l; k
Noise = NoiseVar*randn(1,SamNum);
6 p, U! Z n8 ESamIn = 8*rand(1,SamNum)-4;
/ n8 J$ X& A' nSamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2); 6 ?- y+ i4 @7 @+ C+ Z8 o4 @
SamOut = SamOutNoNoise + Noise;
2 U- m/ _" }$ d4 z: y5 U2 @% g& ?# E4 J0 t2 Q7 P* `
TestSamIn = -4:0.08:4; 9 B! m; @" I) | b' B
TestSamOut = 1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2); 2 W6 o5 X! f. U9 [; g
1 V! c2 \( k: h+ C; ?4 S/ {+ x1 Kfigure + E' b* B" \8 J% Y$ s7 D
hold on ) R6 B/ }6 t4 | {
grid
! t8 {( n) U( j4 P* x, aplot(SamIn,SamOut,'k+')
3 N6 o; Q3 X. X2 ^- Q4 Cplot(TestSamIn,TestSamOut,'r--') # G1 z# A$ r/ N
xlabel('Input x'); 7 P, G }- f4 \8 x) D$ M. E
ylabel('Output y');
% j1 T) O1 I8 Q P4 C1 ~% C! s# r/ Y7 C8 G( W) Q
Centers = SamIn(:,1:ClusterNum);
; t& `: i3 ]0 L+ J7 D9 h2 L3 s8 _ f4 g
NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零
; A3 N$ m) I5 x7 U1 k7 e. cIndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号
" Z) k. S2 N8 h4 j6 [while 1,
% c$ q/ Z: W4 J; |NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 + Y; u# I% K g- N" A! j* a0 Z
IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号 z: C- [$ f: {
2 O1 C; U3 |" V% 按最小距离原则对所有样本进行分类 3 I8 t2 D( l$ u0 \! S6 ]
for i = 1:SamNum ; M9 X- S/ E: y' o, ?. \
AllDistance = dist(Centers',SamIn(:,i)); 2 e$ p" P3 ]+ b" x& W, k M
[MinDist,Pos] = min(AllDistance); 9 Q" g5 W/ D4 G k( C! @& D
NumberInClusters(Pos) = NumberInClusters(Pos) + 1; & A0 q# Q% }# [" y. B8 w
IndexInClusters(Pos,NumberInClusters(Pos)) = i; 0 `- ] r) _! J% E8 X5 ^% l
end
+ R9 ?, _' t9 U0 k/ k* h% 保存旧的聚类中心
) F/ X. v' L4 WOldCenters = Centers;
5 \: S2 z# Q s# c; p# R! t: [. e
. d3 E7 q: o: b3 s3 g" ]) hfor i = 1:ClusterNum
" o7 r" o- l. zIndex = IndexInClusters(i,1:NumberInClusters(i));
$ n# |- B: Z$ @' A: cCenters(:,i) = mean(SamIn(:,Index)')';
8 J2 [4 @6 O1 _0 C: \6 ~7 U7 Eend
" ~9 L2 Y& ~6 @' `% U4 K. U4 {% 判断新旧聚类中心是否一致,是则结束聚类
0 [- g% b" y7 A/ @; s3 MEqualNum = sum(sum(Centers==OldCenters));
( S8 J7 f/ s: V( E7 ]* iif EqualNum == InDim*ClusterNum, : d g1 {6 k/ a' h
break, ) }: w `% I. A9 M5 P0 O
end
" u. e) E: p+ Zend 5 a, d/ \5 Q' E
% c4 j5 s: _2 Y; _
% 计算各隐节点的扩展常数(宽度) 8 Y$ u: x0 H0 T( R) l- `
AllDistances = dist(Centers',Centers); % 计算隐节点数据中心间的距离(矩阵) ! X) s$ X7 g$ g+ \8 e: l- K
Maximum = max(max(AllDistances)); % 找出其中最大的一个距离
8 m+ n7 U/ Z7 {6 ~for i = 1:ClusterNum % 将对角线上的0 替换为较大的值
. e7 C, b3 S* V9 g' r" }3 o' ~AllDistances(i,i) = Maximum+1; ! C' _' K% ~- ^' m
end
" R( L5 _: L1 J2 z# @1 A a5 GSpreads = Overlap*min(AllDistances)'; % 以隐节点间的最小距离作为扩展常数
) R5 a7 Q0 K' B! t2 y6 E
$ u' M% ?: K( X. P( q' G% 计算各隐节点的输出权值 * d8 [2 t* ~% v
Distance = dist(Centers',SamIn); % 计算各样本输入离各数据中心的距离
- ?. T( f+ N" T5 CSpreadsMat = repmat(Spreads,1,SamNum);
! `8 F4 ~" X% B- w. V$ T# j" GHiddenUnitOut = radbas(Distance./SpreadsMat); % 计算隐节点输出阵 7 Q: M5 ?- D. ]9 u- f; v; I5 l" ]
HiddenUnitOutEx = [HiddenUnitOut' ones(SamNum,1)]'; % 考虑偏移
6 \0 r0 A& C( A! l% g6 X; AW2Ex = SamOut*pinv(HiddenUnitOutEx); % 求广义输出权值
+ f( m" t: B0 s% z) J$ g7 [8 iW2 = W2Ex(:,1:ClusterNum); % 输出权值
% W4 ]7 G# l9 G0 @. i) Y1 oB2 = W2Ex(:,ClusterNum+1); % 偏移
, Z. T$ J, W0 G o* Y
1 W4 R! w$ B5 n8 F% 测试
# f" a1 U, s( { cTestDistance = dist(Centers',TestSamIn);
. K3 ?" V/ Z+ b3 W' _) A8 T$ YTestSpreadsMat = repmat(Spreads,1,TestSamNum); 7 |0 X$ [9 O. D- R
TestHiddenUnitOut = radbas(TestDistance./TestSpreadsMat); 9 x9 g d2 T9 v7 i
TestNNOut = W2*TestHiddenUnitOut+B2; . K# I& B1 f( i. a4 V0 S! c
plot(TestSamIn,TestNNOut,'b-') # S; L! D+ g3 a. M
W2
/ |2 A4 G$ D @: ]
5 }) a6 h5 I% {4 l- F$ ]4 c! G# _6 q+ K$ C: n" {9 K% {
7 H, }- w8 O: B( F1 c3 {6 P/ }
l+ f' k7 h# A7 h2 ^& b/ |# b' j' E4 q
& z# Z1 X% L& t' c
" _$ _/ y3 u, f$ v4 F) N) r8 e9 |
|
|