找回密码
 注册
关于网站域名变更的通知
查看: 485|回复: 1
打印 上一主题 下一主题

MATLAB —— 信号处理工具箱之fft的案例分析

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-26 14:06 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
1 M% \7 m) R" V% Q9 ?0 r" H
上篇:
MATLAB —— 信号处理工具箱之fft的介绍和相关案例分析介绍了MATLAB信号处理工具箱中的信号变换 fft 并分析了一个案例,就是被噪声污染了的信号的频谱分析。" s6 H  F4 _3 ~# n4 D/ x9 a
/ O7 f9 G; O, l' H5 x
这篇博文继续分析几个小案例:
% `0 X7 `: Z- s5 v- \9 u
: U) j& S9 }% h2 B7 B1 sGaussian Pulse

5 Z/ ]  }  m5 q& C6 X. B' B3 Z这个案例是将高斯脉冲从时域变换到频域,高斯脉冲的信息在下面的程序中都有注释:- x+ w; v$ I; e) |" w7 D8 D/ [
6 a" K2 w0 Y. Y0 ]1 b3 ^$ V( d
  • clc
  • clear
  • close all
  • % Convert a Gaussian pulse from the time domain to the frequency domain.
  • %
  • % Define signal parameters and a Gaussian pulse, X.
  • Fs = 100;           % Sampling frequency
  • t = -0.5:1/Fs:0.5;  % Time vector
  • L = length(t);      % Signal length
  • X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
  • % Plot the pulse in the time domain.
  • figure();
  • plot(t,X)
  • title('Gaussian Pulse in Time Domain')
  • xlabel('Time (t)')
  • ylabel('X(t)')
  • % To use the fft function to convert the signal to the frequency domain,
  • % first identify a new input length that is the next power of 2 from the original signal length.
  • % This will pad the signal X with trailing zeros in order to improve the peRFormance of fft.
  • n = 2^nextpow2(L);
  • % Convert the Gaussian pulse to the frequency domain.
  • %
  • Y = fft(X,n);
  • % Define the frequency domain and plot the unique frequencies.
  • f = Fs*(0: (n/2))/n;
  • P = abs(Y/n);
  • figure();
  • plot(f,P(1:n/2+1))
  • title('Gaussian Pulse in Frequency Domain')
  • xlabel('Frequency (f)')
  • ylabel('|P(f)|')
  • $ f$ ^2 A2 J+ C+ j
        
- r2 R! {, P5 o- h, P, c  {
4 C" o3 J! b( G1 i0 Z7 Z1 ~7 Q高斯脉冲在时域的图像:7 r) h8 X/ x4 O/ Z' e

8 l- m& L/ s3 `' X, k 0 e" X8 T2 c  d) E$ s; l! W( P( [
, b4 q5 b! H# q# [; @
高斯脉冲在频域的图像:, A0 a, D9 N  M7 Y+ |

9 d, u' {% ^  d0 C( u
9 ?* F1 ]2 Y: `) b0 c3 G; ^

% y- J# T! w) y0 l& i
2 C2 c0 ^- E1 `- }! e/ q; F
( A1 b: Y& b! |* F' MCosine Waves

2 g1 O- C' b3 T# E! B/ A) _3 b% w9 A7 [0 ~! {" L6 }0 H
这个例子比较简单,就是不同频率的余弦波在时域以及频域的比较:4 Z) g9 W# A) o7 O/ p

! }! {1 h) [) a. A; k6 M
  • clc
  • clear
  • close all
  • % Compare cosine waves in the time domain and the frequency domain.
  • %
  • % Specify the parameters of a signal with a sampling frequency of 1kHz and a signal duration of 1 second.
  • & f) T: Z4 G9 I3 q* v2 Q
  • Fs = 1000;                    % Sampling frequency
  • T = 1/Fs;                     % Sampling period
  • L = 1000;                     % Length of signal
  • t = (0: L-1)*T;                % Time vector
  • % Create a matrix where each row represents a cosine wave with scaled frequency.
  • % The result, X, is a 3-by-1000 matrix. The first row has a wave frequency of 50,
  • % the second row has a wave frequency of 150, and the third row has a wave frequency of 300.
  • 8 X4 H5 d# U. o/ w# y
  • x1 = cos(2*pi*50*t);          % First row wave
  • x2 = cos(2*pi*150*t);         % Second row wave
  • x3 = cos(2*pi*300*t);         % Third row wave
  • % v' O  V9 E2 F6 ^- {
  • X = [x1; x2; x3];
  • % Plot the first 100 entries from each row of X in a single figure in order and compare their frequencies.

  • ! g; i$ ?( T( z, f0 [/ |9 [2 E
  • figure();
  • for i = 1:3
  •     subplot(3,1,i)
  •     plot(t(1:100),X(i,1:100))
  •     title(['Row ',num2str(i),' in the Time Domain'])
  • end

  • + W' w+ i$ n1 _6 d
  • % For algorithm performance purposes, fft allows you to pad the input with trailing zeros.
  • % In this case, pad each row of X with zeros so that the length of each row is the next higher power of 2 from the current length.
  • % Define the new length using the nextpow2 function.
  • # W+ G) z" a$ y0 t+ H8 y
  • n = 2^nextpow2(L);
  • % Specify the dim argument to use fft along the rows of X, that is, for each signal.

  • $ \8 _+ Z/ @4 K% t9 ^, d
  • dim = 2;
  • % Compute the Fourier transform of the signals.

  • 7 a) i% F, s! ?2 `0 N1 w- e
  • Y = fft(X,n,dim);
  • % Calculate the double-sided spectrum and single-sided spectrum of each signal.
  • ) a/ _1 P! H  T$ h
  • P2 = abs(Y/L);
  • P1 = P2(:,1:n/2+1);
  • P1(:,2:end-1) = 2*P1(:,2:end-1);
  • % In the frequency domain, plot the single-sided amplitude spectrum for each row in a single figure.

  • $ m- ?+ ^! o" r, S6 n& a
  • figure();
  • for i=1:3
  •     subplot(3,1,i)
  •     plot(0: (Fs/n): (Fs/2-Fs/n),P1(i,1:n/2))
  •     title(['Row ',num2str(i),' in the Frequency Domain'])
  • end7 x; O5 L$ x, o& Q" a2 T
           : f% F# _( U1 ]  Y0 y! Y0 ^2 M

  u+ ?9 L1 }( _) B2 C# W下图是频率为50Hz,150Hz以及300Hz的余弦波在时域的图像:
/ D, K8 W$ O" H: q1 R" {1 C+ U4 b: [6 s
! Z. L7 q, K( X+ _/ t5 Y  p' V% d; q
! w  W4 }7 h: Y1 P5 g
下图分别为其fft:* `1 t) d! e* x
2 }2 u" g2 G2 v5 R6 A$ e

# O' F% w6 e1 n) E8 p
: B% \  f1 f6 M7 F  @. l: I从频域图中可以清晰的看到它们的频率成分位于何处。8 z( H. H( S! u

' l( ~4 i, Y; f2 u" ^' _& H/ R0 ]9 G' ^% }0 q# x6 ^
  • TA的每日心情
    开心
    2020-12-3 15:53
  • 签到天数: 38 天

    [LV.5]常住居民I

    2#
    发表于 2019-11-26 16:00 | 只看该作者
    看看,学习一下
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-23 23:33 , Processed in 0.171875 second(s), 26 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表