TA的每日心情 | 衰 2019-11-19 15:32 |
|---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
留一法交叉验证(LOOCV)
& k* ~0 k( q% Z: I4 @, [4 \& g留一法即Leave-One-Out Cross Validation。这种方法比较简单易懂,就是把一个大的数据集分为k个小数据集,其中k-1个作为训练集,剩下的一个作为测试集,然后选择下一个作为测试集,剩下的k-1个作为训练集,以此类推。其主要目的是为了防止过拟合,评估模型的泛化能力。计算时间较长。$ v7 P5 D& V1 \& Z) S. X" F6 z2 a
2 G8 y- F/ n# H/ Q/ O适用场景:
5 _- p4 ]# R# t3 A! _% Y5 x1 U! i
数据集少,如果像正常一样划分训练集和验证集进行训练,那么可以用于训练的数据本来就少,还被划分出去一部分,这样可以用来训练的数据就更少了。loocv可以充分的利用数据。/ v+ `- y* E6 L( r% G! X
" R2 s+ o$ K$ l, _- ^
6 K' N& `- q, T2 U$ p快速留一法KNN
$ S; s0 P$ P% K& Y0 B% l2 g" }* P3 K$ c
因为LOOCV需要划分N次,产生N批数据,所以在一轮训练中,要训练出N个模型,这样训练时间就大大增加。为了解决这样的问题,根据留一法的特性,我们可以提前计算出不同样本之间的距离(或者距离的中间值),存储起来。使用LOOCV时直接从索引中取出即可。下面的代码以特征选择为Demo,验证快速KNN留一法。
$ r: q% j. B8 a4 o# z, R4 v" z1 v6 G- q1 L. M0 n
其中FSKNN1是普通KNN,FSKNN2是快速KNN
, l! k, V- ?2 w0 l+ I
9 W: K' u8 K5 B主函数main.m$ j p* u4 \$ q) i1 z# f
( q+ E% i s3 D- e3 K
- clc
- [train_F,train_L,test_F,test_L] = divide_dlbcl();
- dim = size(train_F,2);
- individual = rand(1,dim);
- global choice
- choice = 0.5;
- global knnIndex
- [knnIndex] = preKNN(individual,train_F);
- for i = 1:100
- [error,fs] = FSKNN1(individual,train_F,train_L);
- [error2,fs2] = FSKNN2(individual,train_F,train_L);
- end0 K {% j( U5 z. L
O+ T4 {* ]; r% A5 u
+ j4 Z* m, {5 g3 h6 x数据集划分divide_dlbcl.m9 _4 w7 N" k1 ?1 D; O: l6 b2 j
$ c0 N0 ?/ }3 s( ^
- function [train_F,train_L,test_F,test_L] = divide_dlbcl()
- load DLBCL.mat;
- dataMat=ins;
- len=size(dataMat,1);
- %归一化
- maxV = max(dataMat);
- minV = min(dataMat);
- range = maxV-minV;
- newdataMat = (dataMat-repmat(minV,[len,1]))./(repmat(range,[len,1]));
- Indices = crossvalind('Kfold', length(lab), 10);
- site = find(Indices==1|Indices==2|Indices==3);
- test_F = newdataMat(site,:);
- test_L = lab(site);
- site2 = find(Indices~=1&Indices~=2&Indices~=3);
- train_F = newdataMat(site2,:);
- train_L =lab(site2);
- end
# V) F W3 ^1 v, w8 P# v; j: [/ F( L
! t4 E4 `# W5 o1 I& O9 i! Q) |1 Z
0 S% ?+ R* `1 i& [: P3 E简单KNN
: ?0 z8 S8 y5 b& r3 G
' L! U( K( t' A6 xFSKNN1.m' H5 A& E( A; q6 W7 y
! `$ h- \6 J r& E( c- function [error,fs] = FSKNN1(x,train_F,train_L)
- global choice
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- k=1;
- train_f=train_F(:,inmodel);
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- error=0;
- for j=1:train_length
- flag(j) = 0;
- CtrainF = train_f(flag,:);
- CtrainL = train_L(flag);
- CtestF = train_f(~flag,:);
- CtestL = train_L(~flag);
- classifyresult= KNN1(CtestF,CtrainF,CtrainL,k);
- if (CtestL~=classifyresult)
- error=error+1;
- end
- flag(j) = 1;
- end
- error=error/train_length;
- fs = sum(inmodel);
- end
6 p$ p' A8 R: R4 M0 E$ k& A 9 l4 v- c" ]: M5 l& _7 i! r
" n8 Z; c0 }8 k
KNN1.m
$ H2 h! t: f5 G3 j# N& {8 X* \- j3 X/ j4 Y! R/ x7 x
- function relustLabel = KNN1(inx,data,labels,k)
- %%
- % inx 为 输入测试数据,data为样本数据,labels为样本标签 k值自定1~3
- %%
- [datarow , datacol] = size(data);
- diffMat = repmat(inx,[datarow,1]) - data ;
- distanceMat = sqrt(sum(diffMat.^2,2));
- [B , IX] = sort(distanceMat,'ascend');
- len = min(k,length(B));
- relustLabel = mode(labels(IX(1:len)));
- end8 U5 P8 O9 ^; \* Q9 F8 ]9 X) L
# c' n/ Y. z+ @5 |1 ]6 y! t6 f7 }( A: g
快速KNN" f$ \5 ?4 n, C% X
G! i: `3 c3 v+ e- s5 J! apreKNN.m
4 p( N, x1 l/ m
! ~3 n: u) G4 Y3 v! H- function [knnIndex] = preKNN(x,train_F)
- inmodel = x > 0;
- train_f=train_F(:,inmodel);
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- knnIndex = cell(train_length,1);
- for j=1:train_length
- flag(j) = 0;
- CtrainF = train_f(flag,:);
- CtestF = train_f(~flag,:);
- [datarow , ~] = size(CtrainF);
- diffMat = repmat(CtestF,[datarow,1]) - CtrainF ;
- diffMat = diffMat.^2;
- knnIndex{j,1} = diffMat;
- flag(j) = 1;
- end
- end/ k3 P1 Y8 F7 s4 ? N7 b
( I- x8 E. N0 v, C& f7 z: S
; c# l6 W- ?0 LFSKNN2.m
4 ~0 h: t/ Y; c8 W( k* Q# n
% h8 @- H6 m3 V7 K" y$ S0 U- function [error,fs] = FSKNN2(x,train_F,train_L)
- global choice
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- global knnIndex
- k=1;
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- error=0;
- for j=1:train_length
- flag(j) = 0;
- CtrainL = train_L(flag);
- CtestL = train_L(~flag);
- classifyresult= KNN2(CtrainL,k,knnIndex{j}(:,inmodel));
- if(CtestL~=classifyresult)
- error=error+1;
- end
- flag(j) = 1;
- end
- error=error/train_length;
- fs = sum(inmodel);
- end! { q0 p: X. d2 q
: g8 d3 j5 Y$ b; d1 {, m
- i- j5 ]3 p. X% F6 c
KNN2.m- u( Q( |: N: z8 |; }
; z' T9 J; h& `+ ^
- function relustLabel = KNN2(labels,k,diffMat)
- distanceMat = sqrt(sum(diffMat,2));
- [B , IX] = sort(distanceMat,'ascend');
- len = min(k,length(B));
- relustLabel = mode(labels(IX(1:len)));
- end
7 p `/ r! R# s0 {
! Z9 E: t. {5 P- c1 l* g' I' D0 |, B) W) f
结果( K& n+ M: \6 {; l) B, Z
9 m! E, Y4 ^) z( I
$ n" @8 t/ f8 B3 z. M/ k" F' ^) j3 P0 e/ P( r- }$ ?6 [6 h
可以看到FSKNN2+preKNN的时间比FSKNN1要少很多。 O+ r6 ?. m$ e' t
|
|