找回密码
 注册
关于网站域名变更的通知
查看: 559|回复: 1
打印 上一主题 下一主题

HIC失效模式和失效机理

[复制链接]
  • TA的每日心情
    开心
    2020-8-28 15:14
  • 签到天数: 2 天

    [LV.1]初来乍到

    跳转到指定楼层
    1#
    发表于 2021-4-13 13:30 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

    EDA365欢迎您登录!

    您需要 登录 才可以下载或查看,没有帐号?注册

    x
    厚膜、薄膜基板及互连失效, p; X7 `& ]& \2 H+ Y3 P3 T
    作为混合集成电路内部承载元器件并保证其功能电互连的厚膜、薄膜成膜基板,其失效约占混合集成电路总失效的9%,包括机械损伤失效和电气性能失效。
      |7 o4 ~/ B: g6 g# `7 ~1.陶瓷基板失效
    ( H8 j3 _3 Y6 z# i/ k陶瓷基板的主要失效模式为基板开裂,原因是外部作用应力大于陶瓷基板固有的抗拉强度或因为陶瓷基板存在潜在缺陷而降低了基板抗开裂的能力。导致基板开裂的作用应力可能为机械冲击力和温变应力。产生这些作用应力的原因可能是产品跌落产生的机械冲击力、锡焊操作带来的热冲击、基板翘曲不平引起的额外应力、基板与金属外壳和黏结料之间热失配产生的横向拉伸应力、基板内部缺陷造成的机械应力或热应力集中、基板钻孔和基板切割局部微裂造成的潜在损伤等。基板的热膨胀系数应与表面的厚膜元件材料和表贴元器件相接近,否则在变化温度作用下,由于热膨胀系数失配,易造成膜元件和表贴元器件的开裂,也可能对厚膜电阻的温度系数带来很大影响。5 U/ F0 }# e' N& W# l
    2.厚膜导体互连失效
    0 I3 b* c/ j$ N厚膜导体互连的主要失效模式有因金属厚膜与基板附着不良而导致脱落、金属厚膜间发生电化学迁移短路以及与焊料结合的金属厚膜开裂断路。其失效机理及原因包括:
    ! q2 E: X' e# g) o% R: Z(1)由于陶瓷基板表面的有机残留或玻璃相过多,导致厚膜导体层附着力下降甚至脱落。& o. l- D' v" Y* O# ?: f
    (2)覆盖了Pb-Sn焊料的Pd-Ag导体,经130℃长时间作用后,由于锡元素大量向导体扩散形成锡合金,造成厚膜导体与基板间的附着力下降。3 w7 G- n& A+ t- @
    (3)含银类厚膜导体容易发生银离子迁移,造成相邻导体间短路。如厚膜Pd-Ag、Pt-Ag导体,在潮气和外加电场作用下,银离子通过潮气层迁移,形成枝晶状迁移物,使相邻导体之间绝缘电阻下降、漏电流增加,甚至发生短路、电弧现象。
    * m2 `3 I. U. t& Y/ g(4)Pd-Ag导体与片式元件用Pb-Sn焊料焊接后,在温度循环试验后,Pd-Ag导体在焊点尾部出现纵向开裂,其机理是Pb-Sn焊料中的锡元素大量向Pd-Ag导体扩散,形成较脆性的Ag2Sn金属间化合物,导致厚膜导体在温循应力下断裂。
    8 d  u3 j) O9 L9 M( X" U3.厚膜电阻失效. I: ^9 r+ D  m) T7 I
    厚膜电阻器的主要失效模式为参数漂移和参数不稳定,其失效机理及原因包括:' G3 `8 J. B4 Z8 x2 D. s
    (1)Pd-Ag电阻器在湿热环境下由于化学成分的变化导致其阻值不稳定,阻值增加的原因与Pd、Ag元素被氧化有关,阻值减少的原因与Ag被还原有关。
    + n* |  H  y  I3 e1 W0 L2 V(2)Pd-Ag电阻器直接暴露于氢气中参数不稳定,在工艺过程中封装材料环氧树脂、黏合剂、焊剂可能释放氢气,若厚膜电阻表面保护层玻璃釉不良,则会触及氢气,导致参数发生变化。
    ) N- _6 x9 ]( t) N: v5 R/ L(3)厚膜电阻在界面应力作用下导致开裂,应力来源于电阻膜与其保护玻璃釉膜界面之间的应力失配或灌封电路树脂固封时热胀冷缩对电阻膜产生的机械应力。
    4 X, ?7 R+ c/ x/ K4 |(4)激光调阻引入的缺陷,造成阻值不稳定。. W6 j. Q! u& O3 ]; T  J6 y
    (5)高压脉冲使用情况下,厚膜电阻产生很大的阻值变化,一方面原因是厚膜中导体金属与玻璃之间、导体金属颗粒之间存在不完全浸润,另一方面原因是高压脉冲击穿局部膜层中的玻璃相引起电阻等效网络的阻值变化。4 o6 `( y1 q! M
    4.薄膜基板及互连失效; L* N; N+ ^1 m7 ?& y2 a
    薄膜导体的主要失效模式是开路和导体之间短路,其失效机理及原因包括:
    ! A/ _8 j  z2 b# O1 q(1)电化学腐蚀,薄膜金属与环境介质带来的其他离子发生化学反应形成金属化合物,损坏薄膜金属的完整性。
    3 e& k6 Y: E3 k# z% M* Q9 |' J(2)薄膜金属发生电迁移导致布线烧毁,由于电迁移效应将使金属阳极附近出现迁移原子堆集,而在金属阴极附近形成空隙,造成薄膜金属的严重破坏、局部电流密度增大,甚至过热烧毁。0 A3 W2 R8 C' R, i" N/ Z; S
    (3)Cr/Cu/Au薄膜导体与Pb-Sn焊料结合后,存在污染和出现水汽的条件,会出现明显Pd-Ag枝晶状迁移物或大面积的Cu迁移物,元素迁移与C、O、Cl、S沾污元素有关,也与相邻导体间电位差有关。
    ' Z. ]4 }- R4 W; W(4)薄膜电容器的ESD损伤,相同工作电压下薄膜电容容量小的比容量大的对ESD更敏感;而相同容量的薄膜电容器工作电压高的比工作电压低的对ESD更敏感;薄膜电路ESD测试中,薄膜电容器的ESD最为敏感。1 `$ w$ D4 U! W& G0 _; h* W
    (5)SiO2薄膜电容器失效,薄膜电容器下电极边缘“台阶”处电场畸变,且“台阶”处电介质膜层较薄,容易在“台阶”处发生介质击穿,导致电容短路。: _: b6 P/ A$ S, L
    三、厚膜、薄膜基板与元器件的焊接/黏结失效* L/ F2 l  x0 k) C3 ^$ W
    1.厚膜基板与元器件的焊接失效[4]
    1 t0 |- h! {' h3 i: M% @4 D/ e3 {$ `+ A混合集成电路内装元器件与厚膜基板的焊接,是实现电路功能的重要互连部位。与厚膜基板焊接的元器件主要有片式元件和半导体芯片。焊接结构的主要失效模式有元器件脱落、片式元件/芯片开裂和因焊接缺陷导致的散热不良。失效机理及原因包括:. X# S; ~- p& o, n9 A# I
    (1)Pb-Sn焊组装中,含金类厚膜导体溶解在焊料中容易形成Au-Pb-Sn金属间化合物,有可能使基板与元器件的焊接互连强度下降。; `5 b4 B) ?: r0 p# g% q
    (2)厚膜基板氧化或烧结不当引起表面玻璃釉堆集,造成厚膜基板可焊性不良,元器件焊接强度下降。9 m. h4 ^/ J! ~) c! s
    (3)Pb-Sn焊料、Au-Pt-Pd厚膜基板结构,焊料与厚膜基板间会形成金属间化合物(IMC)AuSn4、PtSn、PdSn,若长期工作在高温条件下,较为脆性的IMC层将继续生长加厚,导致芯片抗温度循环能力下降,甚至开裂。
    - X0 c6 P: H. o, k(4)表贴片式电容器端电极开裂,典型的片式电容器有三种端电极结构:Ag、Pd-Ag、Pd-Ag/Ni/Pb-Sn,若端电极焊点为凸状外形,则焊点边缘应力高度集中,温度冲击下电容由端头破裂延伸至瓷体内部而开裂。
    1 M3 ?' Z. w: \(5)功率芯片烧结缺陷导致热击穿烧毁,其原因包括芯片烧结面积不足、存在空洞,影响了芯片焊接强度,在高温应力作用下,空洞缺陷引起焊接界面裂纹、热阻增加,导致功率芯片热性能退化、焊接强度下降;另外,芯片背面金属化可烧结性差,难以形成良好的欧姆接触,如衬底Cr-Ni-Au的芯片背面Ni阻挡层和Au层结构的设计不合理,是影响芯片Si材料与焊料Au互扩散和共熔的主要因素,不能形成良好的AuSi共晶焊接层。
    % }) `2 q  U7 Y  J) ^6 e2.薄膜基板与元器件的焊接失效
    2 Z& y6 F/ {+ r, L% C传统的薄膜基板采用Ni-Cr/Au金属化膜,若采用锡焊工艺,当温度控制稍高或时间稍长时,薄膜表层金镀层极易溶于焊锡,并暴露出与锡不浸润的Ni-Cr层从而导致焊接失效。即使焊接好的基板也会在高温使用过程中,因Au-Sn继续互溶而使可靠性降低。改进方法是在Ni-Cr/Au金属化膜的基础上镀Ni/Sn-Bi、Ni-Cr/Au/Ni/Sn-Bi多层结构,化学镀Ni层作为焊接的中间阻挡层,表面金属Sn-Bi合金电镀层作为焊接层。
    0 O3 ~: D. b# E* T+ z3 s& g3.厚膜基板与元器件的黏结失效
    6 y" [/ q" L, b; W# a: \厚膜基板与元器件的黏结采用两种功能的有机胶:固定用有机胶、导电用有机胶。主要失效模式为由元器件脱落、开裂和黏结材料老化引起的芯片电参数漂移。失效机理及原因包括:
    ) p+ T# E4 w0 |) J4 m1 B(1)采用环氧银导电胶黏结小功率芯片,经125℃/1000h老化后,常表现的失效模式是芯片脱落或晶体管芯片的饱和压降VCES增大,主要原因是配方不当,导电胶偏少,致使黏结的物理机械性能差;烘干固化速度太快,氧化银未充分还原,聚合树脂未能很好固化反应;封装内部的有害残余气体在高温下使导电胶加速老化,导致接触电阻增大。
    9 {. ^' t, j5 _% P. [' e(2)在高温贮存条件下,导电胶的黏结强度随时间而降低,导电胶中黏合剂的热老化是导致导电胶黏结强度降低的主要原因。7 _# b. t% w8 G/ q  C! @
    四、键合互连失效% |/ X; C$ K) p: Y
    混合集成电路的内引线键合主要有双金属键合和单一金属键合两种形式,其失效模式为键合拉力下降和键合点脱开。键合失效在混合集成电路失效中占比23%,其失效类型及机理有:
    : L% K2 `9 h3 Z$ |6 T(1)Au/Al键合界面退化,铝丝与厚膜金导体键合,在高温条件下Au/Al键合界面发生严重退化,导致键合拉力下降。8 ~+ K6 U' b5 D' M  Q
    (2)Au/Cu键合界面退化,铜丝与镀金引线框架键合或者金丝与铜引线框架键合,在200~300℃温度下,界面形成柔韧的金属间化合物Cu3Au、AuCu和Au3Cu[5],界面出现Kirkendall空洞,长时间后导致键合强度下降。
    5 r7 q4 ~/ y6 l  Z- w2 k3 K0 \* T(3)Cu/Al键合界面退化,铜丝与芯片铝键合,在100~500℃温度下,界面通过相互扩散生成金属间化合物CuA12、CuAl、Cu9A14,但不会生成Kirkendall空洞,由于CuA12的脆性,导致剪切强度明显下降,并且铜丝还存在容易氧化的问题。0 O' {4 ^8 Q  s5 x! D- ]
    (4)Al/Ag键合界面退化,铝丝与镀银引线框架键合,一般温度下,Al/Ag键合相互扩散和退化明显,易生成多种复杂金相结构;在175℃以上,若不使用Al/Ag键合,容易因金属间化合物加速生长而生成Kirkendall空洞,同时银表面极易被氧化。
    ) ?1 d) |3 U' F! H' e/ U3 ]五、布线基板与外壳焊接失效
    + G0 V" d* l; s. U1 _布线基板与外壳焊接的失效模式主要是附着强度下降,其失效机理及原因有:* Z# J: o  L% z
    (1)由于基板焊接结构设计和工艺控制不当,引起焊接浸析导致基板附着力下降,原因是基板背面金属化层过薄、焊接温度过高、再流焊次数过多。
    & {( O, F4 ^) j1 O' S& z(2)因焊料选择不当,影响了基板焊接的附着强度和长期可靠性,原因是在基板与镀Au外壳间的焊接中使用了含In的焊料(Pb-In)。
    - _) l) i0 F, `" ?* Z; g
    3 \9 _' D" u) u6 l0 h+ F: C
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-24 23:51 , Processed in 0.140625 second(s), 23 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表