|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
3 V1 i2 w S( L0 V+ z" A
主要思想
K& y* U2 N% i9 Y& v- u7 o3 ~
1 J; x4 a0 ]6 N: C5 ]) d3 n
- V' v' K3 f- [' d Q- a4 K% o" w% R+ n3 i
流程图- P7 z" ^9 c6 {8 i$ P/ U9 F
1 h$ b+ _+ p" g) {
' M; o( i3 i( s x F) S# }) B3 m" |! g3 g# i/ Y
" b& y: O8 u$ z! A
MATLAB代码
[3 o) q& o2 h, a2 J9 j
( p% v- Q2 W' y' T- function [bestMin, bestID] = ILSSIWBA()
- %A new bat algorithm based on iterative local search and stochastic inertia weight
- %omegaxyz.com QQ: 644327005
- clc;
- %% 经典BA参数设置
- t = 1;
- maxT = 100; %最大迭代次数
- dim = 30; %问题的维度
- sizep = 50; %种群大小
- xmin = -0.5;
- xmax = 0.5; %位置向量的范围
- A = 0.6.*ones(sizep,1); % 响度 (不变或者减小)
- r = zeros(sizep,1); % 脉冲率 (不变或增加))
- Qmin = 0; % 最小频率
- Qmax = 1; % 最大频率
- %% 初始化
- Lb = xmin*ones(1,dim);
- Ub = xmax*ones(1,dim);
- pop = Lb+(Ub-Lb).*rand(sizep,dim); %种群初始化
- popv = zeros(sizep,dim); % 速度
- Q = zeros(sizep,1); % 频率
- pfitness = zeros(dim,1);
- for i = 1:sizep
- pfitness(i) = evaluate2(pop(i,:)); %评价
- end
- [bestMin, bestID]=min(pfitness);
- bestS = pop(bestID, :);
- bestArchive = zeros(maxT,1);
- %% 论文中的新策略参数
- umin = 0.4; %The second modification (SIW method)
- umax = 0.9;
- sigma = 0.2;
- R0 = 0.1; %The 3th modification
- Rupper = 0.7;
- A0 = 0.9;
- Alower = 0.6;
- %% 具体迭代过程
- while t <= maxT
- for i = 1:sizep
- Q(i)=Qmin+(Qmin-Qmax)*rand();
- w = umin +(umax-umin)*rand()+sigma*randn(); %The second modification (SIW method)
- popv(i,:)=w*popv(i,:)+(pop(i,:)-bestS)*Q(i); %The second modification (SIW method)
- Stemp = pop(i,:)+popv(i,:);
- % 脉冲率
- if rand>r(i)
- Stemp=bestS-1+2*rand(1,dim);
- end
- fitTemp = evaluate2(Stemp);
- if (fitTemp<=pfitness(i))&&(rand()<A(i))
- pop(i,:) = Stemp;
- pfitness(i) = fitTemp;
- A(i) = (A0-Alower)/(1-maxT)*(t-maxT)+Alower; %The 3th modification
- r(i) = (R0-Rupper)/(1-maxT)*(t-maxT)+Rupper; %The 3th modification
- end
- if fitTemp <= bestMin
- bestID = i;
- bestMin = fitTemp;
- bestS = Stemp;
- end
- end
- interX = bestS.*rand(); %The 1th modification (ILS method)
- interXfit = evaluate2(interX);
- if interXfit < bestMin
- bestMin = interXfit;
- bestS = interX;
- pop(bestID,:) = bestS;
- pfitness(bestID,:) = bestMin;
- else
- if exp(bestMin-interXfit) > rand()
- bestMin = interXfit;
- bestS = interX;
- pop(bestID,:) = bestS;
- pfitness(bestID,:) = bestMin;
- end
- end
- bestArchive(t) = bestMin;
- fprintf('GEN: %d min: %.4f\n', t, bestMin);
- t = t +1;
- end
- end%.m end' f2 V4 B0 q0 Q5 [
8 V# P5 ]6 Z/ F1 O0 [
" M5 ~: d9 T. B+ Z& `$ z% b s A评价函数:- Q. O: p7 D% B0 a4 c
, o* d0 F6 @9 ]7 i+ C
- function z = evaluate2(u)
- %Weierstrass
- dim= length(u);
- sum_1=0;
- sum_2=0;
- sum_3=0;
- a = 0.5;
- b = 3;
- for i=1:dim
- for k=0:30
- sum_1=sum_1+(a^k)*(cos(2*pi*(b^k)*(u(i)+0.5)));
- end
- sum_2=sum_2+sum_1;
- sum_1 = 0;
- end
- for k=0:30
- sum_3=sum_3+(a^k)*(cos(2*pi*(b^k)*0.5));
- end
- z=sum_2-dim*sum_3;
- end* Q; ~+ Y5 z" Q, B6 _
) [1 o6 o1 ]' N) d, v
+ ? p1 E/ S' i# N
|
|