EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Matlab内部函数 a. 基本随机数 Matlab中有两个最基本生成随机数的函数。 1.rand() 生成(0,1)区间上均匀分布的随机变量。基本语法: rand([M,N,P ...]) ; M; A& U6 `/ N
生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: rand(5,1) %生成5个随机数排列的列向量,一般用这种格式 rand(5) %生成5行5列的随机数矩阵 rand([5,4]) %生成一个5行4列的随机数矩阵 $ g6 u+ o: r9 b5 U. Y N
生成的随机数大致的分布。 x=rand(100000,1); hist(x,30); 9 W, P9 m) n% U. {) k' S4 V1 d
由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用) 2.randn() 生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。 randn([M,N,P ...])
3 g, S B+ `6 g: j* O3 l6 M生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: randn(5,1) %生成5个随机数排列的列向量,一般用这种格式 randn(5) %生成5行5列的随机数矩阵 randn([5,4]) %生成一个5行4列的随机数矩阵
0 F9 D3 B) U+ k/ n) s* L9 \, u生成的随机数大致的分布。 x=randn(100000,1); hist(x,50); + N# S) K8 K. t2 G
由图可以看到生成的随机数很符合标准正态分布。 b. 连续型分布随机数 如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。 3.unifrnd() 和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法 unifrnd(a,b,[M,N,P,...])
% I X+ b2 x' {- x生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: unifrnd(-2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式 unifrnd(-2,3,5) %生成5行5列的随机数矩阵 unifrnd(-2,3,[5,4]) %生成一个5行4列的随机数矩阵 %注:上述语句生成的随机数都在(-2,3)区间内.
: O8 l7 {3 L( y2 z* Q1 ^生成的随机数大致的分布。 x=unifrnd(-2,3,100000,1); hist(x,50); % |% r3 ?7 r' G8 q
由图可以看到生成的随机数很符合区间(-2,3)上面的均匀分布。 4.normrnd() 和randn()类似,此函数生成指定均值、标准差的正态分布的随机数。基本语法 normrnd(mu,sigma,[M,N,P,...]) 9 p4 W+ L- A {4 v& s, b, Q
生成的随机数服从均值为mu,标准差为sigma(注意标准差是正数)正态分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: normrnd(2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式 normrnd(2,3,5) %生成5行5列的随机数矩阵 normrnd(2,3,[5,4]) %生成一个5行4列的随机数矩阵 %注:上述语句生成的随机数所服从的正态分布都是均值为2,标准差为3. ) U& { ]* w2 {) }" Q+ J% q
生成的随机数大致的分布。 x=normrnd(2,3,100000,1); hist(x,50);
u0 ^$ M! _. J! ]0 b# X
; I" e' G9 _/ E( a3 N, x" V0 l+ ]( M1 K7 ]7 z; a+ s2 ~1 o
如图,上半部分是由上一行语句生成的均值为2,标准差为3的10万个随机数的大致分布,下半部分是用小节“randn()”中最后那段语句生成10万个标准正态分布随机数的大致分布。 注意到上半个图像的对称轴向正方向偏移(准确说移动到x=2处),这是由于均值为2的结果。 而且,由于标准差是3,比标准正态分布的标准差(1)要高,所以上半部分图形更胖(注意x轴刻度的不同)。 5.chi2rnd() 此函数生成服从卡方(Chi-square)分布的随机数。卡方分布只有一个参数:自由度v。基本语法 chi2rnd(v,[M,N,P,...]) ' R# k# B5 P" ]1 j; k
生成的随机数服从自由度为v的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: chi2rnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式 chi2rnd(5,5) %生成5行5列的随机数矩阵 chi2rnd(5,[5,4]) %生成一个5行4列的随机数矩阵 %注:上述语句生成的随机数所服从的卡方分布的自由度都是5 ) o% o6 J* [$ j* B- d! z$ F
生成的随机数大致的分布。 x=chi2rnd(5,100000,1); hist(x,50);
; y) C, N) I( O/ M/ G- b! H6.frnd() 此函数生成服从F分布的随机数。F分布有2个参数:v1, v2。基本语法 frnd(v1,v2,[M,N,P,...]) ! Z& C0 N) i3 {3 K- a6 q# c, m- n, D! y
生成的随机数服从参数为(v1,v2)的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: frnd(3,5,5,1) %生成5个随机数排列的列向量,一般用这种格式 frnd(3,5,5) %生成5行5列的随机数矩阵 frnd(3,5,[5,4]) %生成一个5行4列的随机数矩阵 %注:上述语句生成的随机数所服从的参数为(v1=3,v2=5)的F分布 ) `' q; D" P* l
生成的随机数大致的分布。 x=frnd(3,5,100000,1); hist(x,50); 7 v; B( S/ }/ N7 Q& S% a
从结果可以看出来, F分布集中在x正半轴的左侧,但是它在极端值处也很可能有一些取值。 7.trnd() 此函数生成服从t(Student's t Distribution,这里Student不是学生的意思,而是Cosset.W.S.的笔名)分布的随机数。t分布有1个参数:自由度v。基本语法 trnd(v,[M,N,P,...])
d3 p. b0 d% k4 r. B& W生成的随机数服从参数为v的t分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子: trnd(7,5,1) %生成5个随机数排列的列向量,一般用这种格式 trnd(7,5) %生成5行5列的随机数矩阵 trnd(7,[5,4]) %生成一个5行4列的随机数矩阵 %注:上述语句生成的随机数所服从的参数为(v=7)的t分布
' i5 Z$ ?% A. G5 H I" a) y生成的随机数大致的分布。 x=trnd(7,100000,1); hist(x,50);
9 Q& S7 T$ m" A9 }8 Y+ u可以发现t分布比标准正太分布要“瘦”,不过随着自由度v的增大,t分布会逐渐变胖,当自由度为正无穷时,它就变成标准正态分布了。 接下来的分布相对没有这么常用,同时这些函数的语法和前面函数语法相同,所以写得就简略一些——在视频中也不会讲述,你只需按照前面那几个分布的语法套用即可,应该不会有任何困难——时间足够的话这是一个不错的练习机会。 8.betarnd() 此函数生成服从Beta分布的随机数。Beta分布有两个参数分别是A和B。下图是A=2,B=5 的beta分布的PDF图形。 . U5 b v7 ?+ n+ x7 w2 L$ q
生成beta分布随机数的语法是: betarnd(A,B,[M,N,P,...]) * k! z0 d6 x7 l$ f8 C' J
9.exprnd() 此函数生成服从指数分布的随机数。指数分布只有一个参数: mu, 下图是mu=3时指数分布的PDF图形 * N& n, W6 n$ r m- g, t. F
生成指数分布随机数的语法是: betarnd(mu,[M,N,P,...]) , }1 a) _# U# @ r: W
10.gamrnd() 生成服从Gamma分布的随机数。Gamma分布有两个参数:A和B。下图是A=2,B=5 Gamma分布的PDF图形
1 E+ v. p1 B% M1 \生成Gamma分布随机数的语法是: gamrnd(A,B,[M,N,P,...])
( g6 @' B- V8 q c$ B" }& t |