|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
为啥矩阵乘法显示矩阵乘法维度不正确?是什么原因?代码如下:
1 q& O7 W: j: P8 M8 m7 W9 F, j! h. r9 a6 M7 Q+ o
function sys = mdlDerivatives( t,x,u)# d" R2 s5 ]; O) D- E6 |* b! u
global uc ur s$ y. S' J6 Y' q* y( t5 t8 c
yd1 = u(1);
8 Q; x% C& b. i3 X' \% Lyd2 = u(2);; q- y c. b6 G4 b% z
dyd1 = cos(t);
& y6 d! b( L% r: I, ~& tdyd2 = cos(t);
. k$ C" Y& L3 C9 @" }' |* Sddyd1 =- sin(t) ;
$ l& l! ?2 x2 ?* I# \. gddyd2 =- sin(t);8 R. ~& ~2 {1 Y1 Y- F# U9 \
x1= u(3);x2= u(4);" @) _/ Y) w, ^
x3 = u(5);x4 = u(6);
& y/ r1 y0 `2 T" _e1 = yd1 - x1;
: D! G# ^0 V F' @e2 = yd2 - x3;( _# _" X4 V" p' h7 S; p2 l: `
de1 = dyd1 - x2;) e1 I4 Q+ |/ q1 \$ G% J( f- u& I' S
de2 = dyd2 - x4;" C5 h& S/ O" U+ U$ E1 O+ ?' E
nmn1 = 20 ; nmn2 = 20 ;/ e1 |( Z& u. t1 b
beta11 = nmn1 ;beta21 = nmn2;
3 N& f2 @' T. ~% y, xK0 = 15 *eye(2);
8 W$ ~$ [! Y* |5 T; y0 _v1 = ddyd1 + beta11 * de1; }+ V: u& Y& G3 U3 Q3 _
v2 = ddyd2 + beta21 * de2 ;
( s# P) A% r5 {9 p4 F9 Ev=[v1 v2]';. q3 O3 L$ N/ }* y
s1=de1+nmn1*e1;0 R, x" D2 L1 S, @
s2=de2+nmn2*e2;/ ~( _* r3 N9 U! t( W
s=[s1 s2]';
' I" \$ t7 m7 @2 k% Contro1 1aw(26)3 L- S$ o2 E( g$ A) X: t+ `
epO = 0.1;
# f% ?! b2 J' s2 KIp= eye(2);
C8 ]1 c; F+ K# w; S9 w: Brou0 = 0.2;
4 f( X8 t% o# j. C" S9 \u1(1) = exp( -1/2* ((x(1) +1.25)/0.6)^2);, R+ ~( P) w5 W- @* G' u; l
u1(2) = exp( -1/2 * (x(1)/0.6)^2);
A( r+ d" Q0 Uu1(3) = exp( - 1/2 * ((x(1)-1.25)/0.6)^2);
9 R3 Z# _! O A2 p: ]u2(1) =exp( - 1/2* ((x(2) + 1.25)/0.6)^2) ;
4 ^) a- X- d1 a X: W; U }u2(2) = exp( - 1/2 * (x(2)/0.6)*2) ;
5 d* h3 s8 [; a, f( p0 l/ \9 P0 Iu2(3) =exp( - 1/2* ((x(2) - 1.25)/0.6)*2) ;9 y5 p/ j0 N) S- G) Y+ C. j
u3(1) =exp( -1/2* ((x(3) + 1.25)/0.6)^2) ;! X* ^. Q8 E& G: u% X
u3(2) = exp( - 1/2 *(x(3)/0.6)^2) ;
) f2 z3 s5 I, pu3(3) =exp( -1/2* ((x(3)-1.25)/0.6)^2);
3 [! w" \2 Y$ L' Y; S0 g2 g+ \u4(1) =exp( - 1/2* ((x(4) + 1.25)/0.6)^2) ;8 K! c1 I6 F- N: K' l3 X9 e
u4(2) = exp( - 1/2 * (x(4)/0.6)^2);9 E7 _! @0 v& r* D) T$ Y, k
u4(3) = exp( -1/2* ((x(4)-1.25)/0.6)^2) ;
( X; e% F& a) M* {7 R: o( XFS1 =0;' u$ _: w" ], X( ~( T
FS2 = zeros(3^4,1);# f. O! l6 @( l$ f0 G
for L1= 1:3
" b0 r. g, A9 g3 F for L2 = 1:3
$ h* B* Z2 w) X% I4 Z% I, h# l) ` for L3 = 1:3
) a0 D2 c" v. ^9 ]# ^2 E7 W4 a for L4 = 1:3
1 l- P% b5 O) f1 b- x+ s FS2(3^3 *(L1-1) + 3^2 *(L2 - 1) + 3*(L3 - 1) + L4) = u1(L1) * u2(L2) * u3(L3) *u4(L4);
9 K3 x% ]; [* P' b: ^+ G FS1= FS1+ u1(L1) * u2(L2)* u3(L3) * u4(L4);
+ w4 w1 p4 k0 z2 a2 l) P5 A end5 x; s( @* ~4 W. |* w
end+ ?) u2 G$ Z7 u; ~ F n
end
: r& s6 { y9 M8 a/ hend
" r$ G. ^( f; j# CFS=FS2/FS1;
$ o& u/ O3 D6 p* u7 L% R9 [3 q& fw_f1 = FS;w_f2 = FS;1 H2 m: u0 A% N. }: w
w_g11 = FS;w_g12 = FS;( y: b; A) D0 h* |( I
w_g21 = FS;w_g22 = FS;
, h2 \% i4 D/ [2 d: ~thtaf1 = x(1:3^4);
/ z- |- C0 w+ A5 |. V* v' Zthtaf2 = x(3^4 + 1:3^4 *2);
! |1 ?* m" B7 j2 {thtag11 = x(3^4 * 2 + 1:3^4 * 3 ); , ?% l9 v- F8 K, @/ B1 H- D% Y
thtag12 = x(3^4 * 3 + 1:3^4 * 4);
& i7 n! o- m0 u4 _$ u0 f- qthtag21 = x(3^4*4 + 1:3^4 * 5); . O: z3 `+ u T3 E$ }% U
thtag22 = x(3^4*5 + 1:3^4* 6);
" z, H6 o, g3 J t7 Kf1 = w_f1'*thtaf1 ;
5 B- s/ o% v/ Y7 c" Wf2 = w_f2'*thtaf2;
* [" h, d k# n. J2 h! gg11 = w_g11'*thtag11;! S" i2 Y$ S( A3 ^9 H
g12 = w_g12'*thtag12; # x7 k/ n0 Z. d. t! B( a
g21 = w_g21 *thtag21 ;* }6 C. L+ B( Y; x" j; H, W- g
g22 = w_g22 *thtag22 ;
$ o6 J" S4 {2 T: m$ z/ F- Eep_f = x(3^4 *6 +1:3^4 *6 +2) ;
1 a! f$ [" Z- Z1 y3 T7 k1 q! Eep_g11 = x(6*3^4 + 3);' a4 w3 }6 {. y3 ^2 T
ep_g12 = x(6 * 3*4 + 4);
5 x+ p* n2 n8 [: M! nep_g21 = x(6 * 3*4 + 5) ;1 F$ u" ~1 I" c5 j' ^& L
ep_g22 = x(6 * 3*4 + 6);
* B: `7 N8 e/ V' z# Eep_g = [ep_g11 ep_g12 ; ep_g21 ep_g22];5 k# N. f2 K! h* n0 c$ ?, G ^5 x
ep_u = x( 3^4 * 6 + 7);
' s. C+ r0 v1 H Cdelta = x(3^4* 6 + 8);
) q* }5 t4 ]2 { d' w' m$ hF= [f1 f2]';: E: U! G! A! J: i% y$ u M0 u; d+ k
G= [g11 g12;g21 g22];
) |8 Y% L4 i# @, Uk1 = 20;% `* M' N! s! e
uc = G'*inv(ep0 *Ip + G*G')*(-F + v+K0*s+ k1*G*s);
* q+ U; E* L& u* z( m2 e5 OuO = epO*inv(epO * Ip + G*G') * (-F + v + K0*s + k1*G*s);
+ g* A. U/ b; A( w8 p& I3 [8 A6 U( Gur = s * abs(s') * (ep_f + ep_g * abs(uc) + ep_u' * abs(u0))/(norm(s)^2 + de1ta);
7 V" }& _" Z- Q* Nxite_f1= 0.5;
( |" O+ K9 r: @; ]0 V2 Xxite_f2 = 0.5;
) M2 c6 F ?. R: g) }5 e! ?% d: hxite_g11 = 0.5;
8 I* E6 t2 z1 m' W! Y0 Jxite_g12 = 0.5;2 {7 L, ^, l# s. y. r
xite_g21 = 0.5;
* i4 B" `9 T: n2 {9 F8 g! qxite_g22 = 0.5;
3 f2 h0 }" r# @9 _! fxite0 = 0.001;
$ V. H7 Q6 n8 k2 C" H8 e& \# N) b%F
) b( D9 `( q$ Y( G& ]! l7 pfor i = 1:1:3^4
# z6 d, E& a/ i sys(i) =- xite_f1 * w_f1(i) * s(1);7 @ \! C* A* w) P0 v5 E+ l
end
( L6 [/ M0 L( Q& _& ufor i= 3^4 + 1:1:2*3^4
% {: c2 q9 [& N3 C0 S+ j sys(i)=-xite_f2 * w_f2(i-3^4) * s(2);: w9 S! }" j3 K9 x0 i
end
8 ^0 y; {1 y6 M% X1 @3 O; N C0 w%G
( ?7 `% K. f4 \$ l* D, n( V, u7 Dfor i=2*3^4+1:1:3*3^40 N8 M- s; u9 V: I% T7 r
sys( i) =- xite_g11*w^g11(i-2*3^4) * s(1)*(uc(1) - k1*s(1));& @: I' H- [7 X. c* ?3 c
end
- |6 E8 R. Z7 x4 gfor i = 3*3^4 + 1:1:4*3^4
3 F1 @0 A, @ ~8 }( F$ R# r sys(i) =- xite_g12 * w_g12(i-3*3^4) * s(1) * (uc(2)-k1*s(2)); l1 I4 h# A* z9 K) t. \' {
end8 m+ z: ~( }" s9 L
for i = 4*3^4 + 1:1:5*3^4$ D& r( U7 J$ f! O6 S( A. I
sys(i) =-xite_g21*w_g21(i - 4*3^4) * s(2) * (uc(1) - k1*s(1));
: ]! H) C3 d z) ?' c! e2 g2 Gend$ S% }. g: U) ?, Q! a }& ^$ w
for i=5*3^4 + 1:1:6*3^4
) }3 u7 K. ~9 @& P sys(i) =- xite_g22 * w_g22(i - 5 *3^4) * s(2) * (uc(2) - k1*s(2));
' e j+ f- Z9 J& y- mend
" W( v3 C- r/ g Q/ y. n/ d8 w2 lgama0 = 0.001;
0 j8 r* A! A% r, o/ W
& c3 q x8 g1 F4 b; n" ssys(6 * 3^4 + 1) = gama0*(abs(s(1))) ; % ep_f1+ j- C4 N: d! g
sys(6 * 3^4 + 2) = gama0* (abs(s(2)));% ep_f24 |) X+ U9 |# A4 B$ k* y5 f
%ep_g
/ b" a' }& D0 h+ W0 J% qsys(6 *3^4 + 3) = gama0 * (abs(s(1))) * abs(uc(1) ); % ep_g1 1
$ U4 I! ~& ~$ ^2 g" b$ W; I% Esys(6 * 3^4 + 4)= gama0 * (abs(s(1))) * abs(uc(2)) ; % ep_g12
8 m8 t- X+ h, u. i) C# Asys(6 * 3^4 + 5)= gama0 * (abs(s(2))) * abs(uc(1)) ; % ep_g21
! Q* ]& w/ [, Z: B6 x$ psys(6 * 3^4 + 6)= gama0 * (abs(s(2))) * abs(uc(2)) ; % ep_g22
0 N6 h/ P2 I5 X. c% ep_u
# ] T8 f, u1 Z) p( _% |! g$ qsys(6 * 3^4 + 7) = gama0*(abs(s')) *abs(u0);+ H9 ]' a+ ?: i7 B6 D
% de1ta& @( i( }; _' N) R! B( x
sys(6 * 3^4 + 8) =- xite0* (abs(s') * (ep_f + ep_g * abs(uc) + ep_u' *abs(uO)))/(norm(s)^2 + de1ta) ;% i+ o% X% G$ s- h" J* i2 Q% d6 @
function sys = mdlOutputs(t,x,u)3 r1 s0 T' m& O; i
global uc ur# W: y" q) V# H) o2 Q' J6 Y
if t == 0
: o f: L& |: d. |0 |) Z% zuc = zeros(2,1);8 U1 p) V0 H! f7 W2 E
ur = zeros(2,1);
3 v# J) J7 s8 F6 |end9 `- {& K* K; ~* `2 S
ut = uc + ur;
; _* L# `% Y4 B5 I6 r5 R2 F- Osys(1) = ut(1);) w: [; E( ]/ D& L& f
sys(2)=ut(2);
7 w7 J+ v( m* A" g+ k; l |
|