|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
8 w& b& h3 u# l: l% T1 U# s
linux 内核庞大而复杂。内核代码阅读的时候,有没有遇到因为宏定义或者inline层次太深而不知道到底代码是什么样子。代码预处理可以解决这个难题。
0 V- {( ~0 p3 h7 H9 m4 [. [* ^- G E# M" y7 G- }9 e
平台:linux 3.4.5 ARM,PC linux上类似,更简单些。
7 W% Y9 {& \: v0 Y1 K: M& _5 c3 F; i5 a5 U, n1 K3 n
加V=1重新编译内核# D) s9 U1 g2 P0 R( G: P" L$ ]; ^
7 ~* W& `4 F% ]: L Z. J; ?5 Q4 B
make内核增加V=1选项,会详细打印编译过程,-B是要求重新编译内核所有模块。6 l2 |# U8 t- w- p6 b/ `
5 }. h; w+ J: t, R- cd linux-3.4.5 && make ARCH=arm defconfig && make ARCH=arm CROSS_COMPILE=arm-buildroot-linux-uclibcgnueabi- EXTRAVERSION=- -B V=1 uImage! Z' G* L. p3 q/ w
1 L4 k3 r. F! |
编译内核并保存编译log到文件,搜索你要预编译的文件,如mm/slab.c,会找到如下编译命令:
/ Y% T$ q. D) C6 c+ W/ U* e: u; D' E6 O! e
- arm-buildroot-linux-uclibcgnueabi-gcc -Wp,-MD,mm/.slab.o.d -nostdinc -isystem /home/test/build/gcc-4.9.8/build_arm/staging_dir/usr/bin/../lib/gcc/arm-buildroot-linux-uclibcgnueabi/4.9.8/include -I/home/test/linux/kernels/linux-3.4.5/arch/arm/include -Iarch/arm/include/generated -Iinclude -include /home/test/linux/kernels/linux-3.4.5/include/linux/kconfig.h -D__KERNEL__ -mlittle-endian -Iarch/arm/mach-zx297510/include -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs -fno-strict-aliasing -fno-common -Werror-implicit-function-declaration -Wno-format-security -fno-delete-null-pointer-checks -O2 -marm -fno-dwaRF2-cfi-asm -mabi=aapcs-linux -mno-thumb-interwork -funwind-tables -D__LINUX_ARM_ARCH__=7 -march=armv7-a -msoft-float -Uarm -Wframe-larger-than=1024 -fno-stack-protector -Wno-unused-but-set-variable -fomit-frame-pointer -g -fno-inline-functions-called-once -Wdeclaration-after-statement -Wno-pointer-sign -fno-strict-overflow -fconserve-stack -DCC_HAVE_ASM_GOTO -D"KBUILD_STR(s)=#s" -D"KBUILD_BASENAME=KBUILD_STR(slab)" -D"KBUILD_MODNAME=KBUILD_STR(slab)" -c -o mm/.tmp_slab.o mm/slab.c
4 J9 \# _' s+ M 7 a( ^- z% R( u' y, l
编译预处理指定文件6 R6 }( g" Z. b/ e" \6 C# \4 q' m- V
; F% L7 A1 S! R1 _6 l+ D把编译命令修改成预处理命令:-c -o mm/.tmp_slab.o修改成-E -o mm/slab.E mm/slab.c,在内核目录linux-3.4.5直接执行。如果是交叉编译链,可能需要把arm-buildroot-linux-uclibcgnueabi-gcc所在路径加入到环境变量PATH里。
* o1 b: t" ]9 L' H' p. n
! A0 y( x: Z1 \; p- arm-buildroot-linux-uclibcgnueabi-gcc -Wp,-MD,mm/.slab.o.d -nostdinc -isystem /home/test/build/gcc-4.9.8/build_arm/staging_dir/usr/bin/../lib/gcc/arm-buildroot-linux-uclibcgnueabi/4.9.8/include -I/home/test/linux/kernels/linux-3.4.5/arch/arm/include -Iarch/arm/include/generated -Iinclude -include /home/test/linux/kernels/linux-3.4.5/include/linux/kconfig.h -D__KERNEL__ -mlittle-endian -Iarch/arm/mach-zx297510/include -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs -fno-strict-aliasing -fno-common -Werror-implicit-function-declaration -Wno-format-security -fno-delete-null-pointer-checks -O2 -marm -fno-dwarf2-cfi-asm -mabi=aapcs-linux -mno-thumb-interwork -funwind-tables -D__LINUX_ARM_ARCH__=7 -march=armv7-a -msoft-float -Uarm -Wframe-larger-than=1024 -fno-stack-protector -Wno-unused-but-set-variable -fomit-frame-pointer -g -fno-inline-functions-called-once -Wdeclaration-after-statement -Wno-pointer-sign -fno-strict-overflow -fconserve-stack -DCC_HAVE_ASM_GOTO -D"KBUILD_STR(s)=#s" -D"KBUILD_BASENAME=KBUILD_STR(slab)" -D"KBUILD_MODNAME=KBUILD_STR(slab)" -E -o mm/slab.E mm/slab.c
# X) `1 b5 V3 `7 y- ?0 U 7 s6 A6 K! T! A8 e* h& v+ s$ b- F
执行完命令,在内核的mm目录就能看到slab.c的预处理后文件slab.E文件了。看一下kmalloc函数代码,是不是清晰很多了。
- s+ t- B5 e% l) U& k0 x4 i6 D$ k8 a) y, D& C& J
slab_def.h里的原始kmalloc
/ @+ j* e( Z/ J
# }" [$ I8 {9 n+ R- static __always_inline void *kmalloc(size_t size, gfp_t flags)
- {
- struct kmem_cache *cachep;
- void *ret;
- if (__builtin_constant_p(size)) {
- int i = 0;
- if (!size)
- return ZERO_SIZE_PTR;
- #define CACHE(x) \
- if (size <= x) \
- goto found; \
- else \
- i++;
- #include <linux/kmalloc_sizes.h>
- #undef CACHE
- return NULL;
- found:
- #ifdef CONFIG_ZONE_DMA
- if (flags & GFP_DMA)
- cachep = malloc_sizes.cs_dmacachep;
- else
- #endif
- cachep = malloc_sizes.cs_cachep;
- ret = kmem_cache_alloc_trace(size, cachep, flags);
- return ret;
- }
- return __kmalloc(size, flags);
- } A: N; v" b; i6 K( T: y' Z$ y
7 C/ e. R/ d! v$ y |# w, W
预处理后的kmalloc,流程是不是清晰多了。
1 P) g- A; ]( X7 D- Z X3 R c9 H7 \# D4 b9 Z2 j
- static inline __attribute__((always_inline)) __attribute__((always_inline)) void *kmalloc(size_t size, gfp_t flags)
- {
- struct kmem_cache *cachep;
- void *ret;
- if (__builtin_constant_p(size)) {
- int i = 0;
- if (!size)
- return ((void *)16);
- # 1 "include/linux/kmalloc_sizes.h" 1
- if (size <= 32) goto found; else i++;
- if (size <= 64) goto found; else i++;
- if (size <= 128) goto found; else i++;
- if (size <= 192) goto found; else i++;
- if (size <= 256) goto found; else i++;
- if (size <= 512) goto found; else i++;
- if (size <= 1024) goto found; else i++;
- if (size <= 2048) goto found; else i++;
- if (size <= 4096) goto found; else i++;
- if (size <= 8192) goto found; else i++;
- if (size <= 16384) goto found; else i++;
- if (size <= 32768) goto found; else i++;
- if (size <= 65536) goto found; else i++;
- if (size <= 131072) goto found; else i++;
- if (size <= 262144) goto found; else i++;
- if (size <= 524288) goto found; else i++;
- if (size <= 1048576) goto found; else i++;
- if (size <= 2097152) goto found; else i++;
- if (size <= 4194304) goto found; else i++;
- # 145 "include/linux/slab_def.h" 2
- return ((void *)0);
- found:
- cachep = malloc_sizes.cs_cachep;
- ret = kmem_cache_alloc_trace(size, cachep, flags);
- return ret;
- }
- return __kmalloc(size, flags);
- }
0 M1 Q! X; t& m. R |
|