TA的每日心情 | 衰 2019-11-19 15:32 |
|---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
留一法交叉验证(LOOCV)+ c+ f3 ^8 ~6 B$ Y; b
留一法即Leave-One-Out Cross Validation。这种方法比较简单易懂,就是把一个大的数据集分为k个小数据集,其中k-1个作为训练集,剩下的一个作为测试集,然后选择下一个作为测试集,剩下的k-1个作为训练集,以此类推。其主要目的是为了防止过拟合,评估模型的泛化能力。计算时间较长。
+ U/ o+ l+ M& v( _: G3 _+ T2 z& g5 G8 w
适用场景:
+ b2 r0 c9 _& _2 a* j
% ?4 C3 q/ T- f; x/ E5 Y _数据集少,如果像正常一样划分训练集和验证集进行训练,那么可以用于训练的数据本来就少,还被划分出去一部分,这样可以用来训练的数据就更少了。loocv可以充分的利用数据。9 i2 x% X) H" i* n( y
! m" L9 Z/ U& x4 J) l1 {) Q% G. T- ^- X4 c
快速留一法KNN
% w0 d# O* [/ H* E0 @5 ~
5 ^0 I% u5 \( w# B因为LOOCV需要划分N次,产生N批数据,所以在一轮训练中,要训练出N个模型,这样训练时间就大大增加。为了解决这样的问题,根据留一法的特性,我们可以提前计算出不同样本之间的距离(或者距离的中间值),存储起来。使用LOOCV时直接从索引中取出即可。下面的代码以特征选择为Demo,验证快速KNN留一法。
$ u& @$ N% M" T% D# Z- L$ M/ {( B( k" c; ?& b" C
其中FSKNN1是普通KNN,FSKNN2是快速KNN
. j) f$ E' f9 l: B, W. `6 J
3 a# q! b# ?! n% d主函数main.m! T8 \4 U* A7 {/ o
9 T) N* E0 H3 M6 l# V
- clc
- [train_F,train_L,test_F,test_L] = divide_dlbcl();
- dim = size(train_F,2);
- individual = rand(1,dim);
- global choice
- choice = 0.5;
- global knnIndex
- [knnIndex] = preKNN(individual,train_F);
- for i = 1:100
- [error,fs] = FSKNN1(individual,train_F,train_L);
- [error2,fs2] = FSKNN2(individual,train_F,train_L);
- end
. H1 [4 F8 ~7 z) ] 3 a$ p9 E% K5 O8 m, g/ G" x
! J/ _/ m! V3 i7 b1 g
数据集划分divide_dlbcl.m
]+ [7 P: x: F) `. L
0 N' [5 b( n7 o, Z. g% o- function [train_F,train_L,test_F,test_L] = divide_dlbcl()
- load DLBCL.mat;
- dataMat=ins;
- len=size(dataMat,1);
- %归一化
- maxV = max(dataMat);
- minV = min(dataMat);
- range = maxV-minV;
- newdataMat = (dataMat-repmat(minV,[len,1]))./(repmat(range,[len,1]));
- Indices = crossvalind('Kfold', length(lab), 10);
- site = find(Indices==1|Indices==2|Indices==3);
- test_F = newdataMat(site,:);
- test_L = lab(site);
- site2 = find(Indices~=1&Indices~=2&Indices~=3);
- train_F = newdataMat(site2,:);
- train_L =lab(site2);
- end/ F: [9 Y8 o! M0 T8 V0 W6 L
! ?7 U0 O" C' R/ L0 ?- @; O0 J6 m
$ h: @! B+ W) S4 X8 d1 E2 P
简单KNN& ], h5 w+ w! s! @
- y Z# n) q2 ]2 c
FSKNN1.m, e% v+ Y5 E, F' q$ o
1 b5 p7 P1 V: @: R
- function [error,fs] = FSKNN1(x,train_F,train_L)
- global choice
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- k=1;
- train_f=train_F(:,inmodel);
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- error=0;
- for j=1:train_length
- flag(j) = 0;
- CtrainF = train_f(flag,:);
- CtrainL = train_L(flag);
- CtestF = train_f(~flag,:);
- CtestL = train_L(~flag);
- classifyresult= KNN1(CtestF,CtrainF,CtrainL,k);
- if (CtestL~=classifyresult)
- error=error+1;
- end
- flag(j) = 1;
- end
- error=error/train_length;
- fs = sum(inmodel);
- end7 _0 @7 P1 y+ X1 c9 M f" Y
, o! j4 L F% e# g: h* M5 n+ f* A/ [7 |
KNN1.m* `- ]; G3 L6 U2 O1 P
5 V% V5 T v+ V5 ~
- function relustLabel = KNN1(inx,data,labels,k)
- %%
- % inx 为 输入测试数据,data为样本数据,labels为样本标签 k值自定1~3
- %%
- [datarow , datacol] = size(data);
- diffMat = repmat(inx,[datarow,1]) - data ;
- distanceMat = sqrt(sum(diffMat.^2,2));
- [B , IX] = sort(distanceMat,'ascend');
- len = min(k,length(B));
- relustLabel = mode(labels(IX(1:len)));
- end
$ N7 b$ v0 y# x2 ^ ( L. n3 ^1 g2 L' d* s
# |+ o7 d4 z7 L# j3 [快速KNN: C9 z& I- [5 a" G' A* K% x+ p
9 |! L6 p6 e1 Q. e; O0 }" R. Z
preKNN.m& {, \9 k7 R5 i* W C
5 J7 N n' L; `7 e) J" h- function [knnIndex] = preKNN(x,train_F)
- inmodel = x > 0;
- train_f=train_F(:,inmodel);
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- knnIndex = cell(train_length,1);
- for j=1:train_length
- flag(j) = 0;
- CtrainF = train_f(flag,:);
- CtestF = train_f(~flag,:);
- [datarow , ~] = size(CtrainF);
- diffMat = repmat(CtestF,[datarow,1]) - CtrainF ;
- diffMat = diffMat.^2;
- knnIndex{j,1} = diffMat;
- flag(j) = 1;
- end
- end+ ]) X* k- @7 ?8 E+ |. A
" h$ X$ t' j* V& r0 A
4 {/ _0 m/ @1 {$ a
FSKNN2.m P5 C& s$ X6 U
$ j: P/ X$ J& q5 R: N4 P! O3 g
- function [error,fs] = FSKNN2(x,train_F,train_L)
- global choice
- inmodel = x>choice;%%%%%设定恰当的阈值选择特征
- global knnIndex
- k=1;
- train_length = size(train_F,1);
- flag = logical(ones(train_length,1));
- error=0;
- for j=1:train_length
- flag(j) = 0;
- CtrainL = train_L(flag);
- CtestL = train_L(~flag);
- classifyresult= KNN2(CtrainL,k,knnIndex{j}(:,inmodel));
- if(CtestL~=classifyresult)
- error=error+1;
- end
- flag(j) = 1;
- end
- error=error/train_length;
- fs = sum(inmodel);
- end
- B& R' C- I Q% J0 `3 f; w( [ 3 N, t! q/ S) P# ?& J8 W
$ R+ @" i7 b9 d4 @
KNN2.m2 R: R- u$ n N' r1 m3 K( X
. C( d/ ?+ L! J# u8 a2 a
- function relustLabel = KNN2(labels,k,diffMat)
- distanceMat = sqrt(sum(diffMat,2));
- [B , IX] = sort(distanceMat,'ascend');
- len = min(k,length(B));
- relustLabel = mode(labels(IX(1:len)));
- end
- M( `5 v. h7 Z: u' A / p+ {; v7 @& Z4 z( B( q1 S' R
$ I' i) ]" F8 V" q# i1 V0 n0 y
结果
! k; R+ z# i3 L7 T$ l5 t) e
4 o, R* `6 z) H0 r9 Z
* }+ t/ j9 t3 R, _9 b, a0 X' D2 y5 f; ]1 k1 [/ B
可以看到FSKNN2+preKNN的时间比FSKNN1要少很多。7 M/ T' g8 g+ l# L7 K" p+ P
|
|