找回密码
 注册
关于网站域名变更的通知
查看: 411|回复: 1
打印 上一主题 下一主题

基于非支配排序的多目标PSO算法MATLAB实现

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-10-22 15:39 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 thinkfunny 于 2020-10-22 15:41 编辑
8 s. M% z; J$ P: J  r+ n- F( U: J7 A5 I8 g% L* b: \
这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。其中NSPSO是参考了NSGA2的框架和思想。
! F! |- P* h; [+ |/ k  J% b" X
4 W0 ^+ ^! V. n7 R3 Z* X& j伪代码
$ Y& }0 K- y* z# r* ?. @/ d
$ A1 _; q, d- L% J具体流程: s/ T/ N6 ?) s6 ~9 n
  • ①划分数据集为测试集和训练集
  • ②初始化PSO算法
  • ③迭代开始
  • ④计算两个目标值(论文中是特征数和错误率)
  • ⑤非支配排序
  • ⑥拥挤距离度量并排序
  • ⑥对每个粒子从第一前沿面选择一个粒子作为gbest,更新当前粒子
  • ⑦调整粒子群
  • ⑧迭代结束返回' f% S( ~$ a2 m* \. i1 O
$ g/ r. }" I6 v; ]( c6 ]
MATLAB实现:
* c8 R8 d( Z  V! eNSPSO:+ [/ c. {0 V% x) V

, z1 b) c4 u) J- n- Q- `注意其中FSKNN是我的问题的评价函数,包含两个目标值,都存入到pfitness中) B" l' h2 r, |" M1 f

; Z9 g, s+ \/ s0 a
  • function [solution,time,pop,pfitness,site,LeaderAVE] = NSPSO(train_F,train_L)
  • tic
  • global maxFES
  • dim = size(train_F,2);
  • FES = 1;
  • sizep = 30;
  • pop = rand(sizep,dim);
  • popv = rand(sizep,dim);
  • pfitness = zeros(sizep,2);
  • LeaderAVE = zeros(1,2);
  • while FES <maxFES
  •     Off_P = zeros(sizep,dim);
  •     Off_V = zeros(sizep,dim);
  •     ofitness = zeros(sizep,2);
  •     for i=1:sizep
  •         [pfitness(i,1),pfitness(i,2)] = FSKNN(pop(i,: ),i,train_F,train_L);
  •     end
  •     Front = NDSort(pfitness(:,1:2),sizep);
  •     [~,rank] = sortrows([Front',-CrowdingDistance(pfitness,Front)']);
  •     LeaderSet = rank(1:10);
  •     solution = pfitness(LeaderSet,: );
  •     LeaderAVE(1) = mean(solution(:,1));
  •     LeaderAVE(2) = mean(solution(:,2));
  •     for i = 1:sizep
  •         good = LeaderSet(randperm(length(LeaderSet),1));
  •         r1 = rand(1,dim);
  •         r2 = rand(1,dim);
  •         Off_V(i,: ) = r1.*popv(i,: ) +  r2.*(pop(good,: )-pop(i,: ));
  •         Off_P(i,: ) = pop(i,: ) + Off_V(i,: );
  •     end
  •     for i=1:sizep
  •             [ofitness(i,1),ofitness(i,2)] = FSKNN(Off_P(i,: ),i,train_F,train_L);
  •     end
  •     temppop = [pop;Off_P];
  •     tempv = [popv;Off_V];
  •     tempfiness = [pfitness;ofitness];
  •     [FrontNO,MaxFNO] = NDSort(tempfiness(:,1:2),sizep);
  •     Next = false(1,length(FrontNO));
  •     Next(FrontNO<MaxFNO) = true;
  •     PopObj = tempfiness;
  •     fmax   = max(PopObj(FrontNO==1,: ),[],1);
  •     fmin   = min(PopObj(FrontNO==1,: ),[],1);
  •     PopObj = (PopObj-repmat(fmin,size(PopObj,1),1))./repmat(fmax-fmin,size(PopObj,1),1);
  •     % Select the solutions in the last front
  •     Last = find(FrontNO==MaxFNO);
  •     del  = Truncation(PopObj(Last,: ),length(Last)-sizep+sum(Next));
  •     Next(Last(~del)) = true;
  •     % Population for next generation
  •     pop = temppop(Next,: );
  •     popv = tempv(Next,: );
  •     pfitness = tempfiness(Next,: );
  •     fprintf('GEN: %2d   Error: %.4f  F:%.2f\n',FES,LeaderAVE(1),LeaderAVE(2));
  •     FES = FES + 1;
  • end
  • [FrontNO,~] = NDSort(pfitness(:,1:2),sizep);
  • site = find(FrontNO==1);
  • solution = pfitness(site,: );
  • LeaderAVE(1) = mean(solution(:,1));
  • LeaderAVE(2) = mean(solution(:,2));
  • toc
  • time = toc;
  • end  S" Q. H' a2 n

" T1 y8 \0 r& ?" I  ~- a; _/ a8 D
- T0 b4 C8 j6 [拥挤距离代码:( H% d+ f! V' d. ]* ]  F& G

7 e3 B* z- _1 Z2 c# D; t) H) u5 L
  • function CrowdDis = CrowdingDistance(PopObj,FrontNO)
  • % Calculate the crowding distance of each solution front by front
  • % Copyright 2015-2016 Ye Tian
  •     [N,M]    = size(PopObj);
  •     CrowdDis = zeros(1,N);
  •     Fronts   = setdiff(unique(FrontNO),inf);
  •     for f = 1 : length(Fronts)
  •         Front = find(FrontNO==Fronts(f));
  •         Fmax  = max(PopObj(Front,: ),[],1);
  •         Fmin  = min(PopObj(Front,: ),[],1);
  •         for i = 1 : M
  •             [~,Rank] = sortrows(PopObj(Front,i));
  •             CrowdDis(Front(Rank(1)))   = inf;
  •             CrowdDis(Front(Rank(end))) = inf;
  •             for j = 2 : length(Front)-1
  •                 CrowdDis(Front(Rank(j))) = CrowdDis(Front(Rank(j)))+(PopObj(Front(Rank(j+1)),i)-PopObj(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
  •             end
  •         end
  •     end
  • end
      S2 g0 y  e' Q3 f
    6 s: e# ]% O( h  a1 b$ A6 Z. J
' W: v, v/ @! G2 c6 w
Truncation.m代码:
7 q5 |, g( c$ v' x1 M) P' J( d, \8 J1 h4 O
  • function Del = Truncation(PopObj,K)
  • % Select part of the solutions by truncation
  •     N = size(PopObj,1);
  •     %% Truncation
  •     Distance = pdist2(PopObj,PopObj);
  •     Distance(logical(eye(length(Distance)))) = inf;
  •     Del = false(1,N);
  •     while sum(Del) < K
  •         Remain   = find(~Del);
  •         Temp     = sort(Distance(Remain,Remain),2);
  •         [~,Rank] = sortrows(Temp);
  •         Del(Remain(Rank(1))) = true;
  •     end
  • end: e0 B5 }. R& l

) F6 C/ P& C* ^8 l! N/ J" F
% F+ h6 w0 e# i* c% H3 G   9 v. u8 [& p/ y$ H/ d% h" g
  • TA的每日心情
    开心
    2020-9-2 15:04
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    2#
    发表于 2020-10-26 10:57 | 只看该作者
    NSPSO采用NSGA2的框架
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-24 07:14 , Processed in 0.140625 second(s), 25 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表