找回密码
 注册
关于网站域名变更的通知
查看: 968|回复: 1
打印 上一主题 下一主题

索引超出矩阵维度怎么处理?

[复制链接]
  • TA的每日心情

    2019-11-19 15:34
  • 签到天数: 1 天

    [LV.1]初来乍到

    跳转到指定楼层
    1#
    发表于 2020-8-12 15:20 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

    EDA365欢迎您登录!

    您需要 登录 才可以下载或查看,没有帐号?注册

    x
    求解一个微分方程组,提示索引超出矩阵维度,但我看了好久也没找到哪里出问题了,请大神们帮帮忙。程序如下主程序:
    4 M8 f2 z; A0 W- K5 K2 k, V+ r, P' F8 ?  U* v
    clc
    - O" P# ^, O) E) y7 w) Oclear all;
    & c2 r  a+ s3 D, b( A. w. zclose all;
    # V( A  V8 ^6 y: B# Q, _) B; [8 }. R, B" Z& ?
    tinit=0;                    % time min / initial time
    4 R4 f9 n7 x2 K, j7 H. ftmax=100;                   % time length
    - c8 |8 ?1 n8 ?9 E0 Q' |dt=0.01; % time interval # V  p4 k. x3 x2 ^. o2 b& n( R
    M=tmax/dt; % time points   [( n8 @& b; _+ h* r* o7 J7 C; h
    tspan=linspace(tinit,M*dt,M+1);' a; b6 I; V& r. ~  ^0 p" P0 x

    + p8 |! ~; d' c( G' v5 N0 \K=100; %space points, I& n3 r& r, Q6 ?
    I=zeros(K/2,1);
    4 \1 R! D9 G5 n7 ?/ s& Q0 D4 x2 tR=zeros(K/2,1);
    5 ^0 ~/ S5 l9 BT=zeros(1,1);
    # V! ~$ P; H2 D6 v. YV=zeros(1,1);2 M7 D. Z4 p- @2 E0 x: O
    %S=zeros(1,1);
    ! i6 e4 E( }% s6 X%I=zeros(1,1);
    9 x( @& b: v; s. H2 e8 O  Y2 G
    7 `$ x: U* q! e4 Es = 13;4 f  Z2 S& P8 y6 l9 z' D4 y
    d = 1;
    , r) ]: A; p. Ebeta =0.8;
    ( V5 D0 H$ a) r, e1 A; C- Zc=20;1 e1 k6 V0 A  g; F3 z
    es=0;%without treatment es=0+ a# E2 R5 }) q& d6 w
    ea=0;%without treatment ea=0- [. F2 y' Y* t" f" s$ E& c
    kappa=1;%%without treatment kappa=1
    5 O9 D# V. r5 M6 A' I# V; L4 T( C
      M# Z5 J# i* ?  [& f; [# o. s  PI(1)=beta;
    7 R- W4 a$ A& i) c) z3 ci0=I;
    , ?6 n/ }, s5 Y8 QR(K/2+1)=1; % gamma*I. W2 v: g  c% w: Z9 y) @4 O6 H0 M
    r0=R;" m; [* F$ ~7 B" d( H* a; n( M4 C7 G- d, |
    %S(1)=S;+ \$ S$ ^# T5 R; U$ \
    t0=1;
    $ |, n3 d+ P2 O%I(1)=I;
    9 X% H- R6 u  X1 \! b4 Gv0=1;
      |; W/ |% x8 \# @: X7 b) \0 C  L# `" m; n, m6 B- K
    aiinit=0.0;
    8 h% `5 r1 T8 Vaimax=84; % space length
    " P+ Y& a0 P6 R0 {6 b* xdai=(aimax-aiinit)/K; %space interval
    # w, V! z- m" J; f8 Caispan=linspace(aiinit,aimax,K);8 e2 @' t& h5 @  F# u- o
    aispan=aispan.';* R) e4 H4 Z0 b' A7 n- v! G
    ; i( {, C( [/ `
    options = odeset('RelTol', 1e-4, 'NonNegative', [1 2 3],'AbsTol', 1e-4, 'NonNegative', [1 2 3]);
    5 Z  @( u. ~/ C. n/ {. Y5 E8 E[t,sir] = ode15s(@(t,sir)mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa),tspan,[i0' r0' t0 v0],options); . X6 u1 A* N! E" D- P. `

    , k0 z+ }/ S% A; _figure  E" A2 `; }' L0 B3 U
    h1=suRF(aispan,t,sir(:,1:K/2));
    9 ]: b7 {7 O9 b/ J, R" }set(h1,'LineStyle','none');
    3 B) ^. N3 G2 S* }hold on' f/ C# i. G2 X- [6 h
    xlabel('Age (ai)')( H! J" @3 N9 {. T' K  G+ m4 D4 I
    ylabel('Time (t)')% I' @0 f- U! x# ]/ `* L' m
    zlabel('I(ai,t)')  {# d# a* [3 ^* A# O' O4 E
    / n% O. ~. n3 a/ B5 h9 U
    figure6 t% f' G! u+ D' f7 v3 @2 _# G
    h2=surf(aispan,t,sir(:,K/2+1:K));' ~' H- [7 w7 M( J& g' M
    set(h2,'LineStyle','none');) f+ \2 V; L7 k- ]3 W3 _" ~( P
    hold on
    $ p; U0 _1 |8 wxlabel('Age (ai)')) e# Z+ I+ G5 h. P# ~
    ylabel('Time (t)')2 }' a$ m) ]0 d+ Y3 I0 W
    zlabel('R(ai,t)')) x5 B! a) H- i$ Y: }

    2 K) d4 \4 R/ A2 i4 X4 {: x7 Cfigure$ _8 ^" |! Y" P" w4 R
    % R is matrix, sum(R,dimension) is a column vector containing sum of each row
    ( [! @1 _8 u1 x' y0 O* `6 H, Mplot(t,sum(sir(:,1:K/2),2),'Color',[0.5 0 0.9]), T, i+ ?0 [: }  q/ C
    hold on6 O6 E. c5 h1 j. {4 L1 N4 d
    xlabel('Time (t)')
    . e8 S! z( D+ v4 n/ _7 W; ^ylabel('I(t)')
    4 Z1 ]+ h9 K* h8 ~legend('Recovered')
    8 }0 d$ N! O; f) u2 D) j3 u) D! k
    $ O2 X9 O7 E' ]. T* E- T: ^4 K- A, Rfigure
    7 K5 U- U; G$ W/ `% R is matrix, sum(R,dimension) is a column vector containing sum of each row0 ]7 d' _, L. s% u+ K* P3 [! ]' u
    plot(t,sum(sir(:,K/2+1:K),2),'Color',[0.5 0 0.9])+ `" n. M) s2 }. k% a
    hold on+ g. U. e& X7 Z5 \. O
    xlabel('Time (t)')
    & \9 j1 P( {8 T6 m# v: \ylabel('R(t)')
    7 S) d5 \) V" r! i( slegend('Recovered')
    % S2 H; B: C$ q) n3 Y) J' z  R; ]1 B+ i/ `. e3 n8 {% m) Y
    figure& W0 b& B. x/ P; W* ]7 r  E# y
    plot(t,sir(:,K+1),'Color',[0 0 1])
    ( e5 z  @) R$ g1 Z5 n  V* _. T1 g" Ahold on* x2 A3 \3 h, h; E
    plot(t,sir(:,K+2))%,'Color',[1 0 0])2 O) q  T1 m, M. Q/ c' C  s9 i
    hold on/ z9 K8 o+ u% I* E9 m( l4 {* q! w
    % R is matrix, sum(R,dimension) is a column vector containing sum of each row9 S$ `. m/ x: l' j* m9 D
    plot(t,sum(sir(:,1:K/2),2),'Color',[0.5 0 0.9]);
    7 f+ z, `+ r* h" z" ]1 Lhold on
    ) u9 [8 [5 q! a8 gplot(t,sum(sir(:,K/2+1:K),2),'Color',[0.5 0 0.9])
    9 x$ ]& G2 T  l$ S) Stitle('Population vs Time')
    1 ?% Q& a7 o% e( axlabel('Time (t)')6 p! Z& c6 S- J9 r
    ylabel('Population')* y, V8 A4 l, B9 }6 m' j
    legend('Susceptible','Infected','Recovered')! t; h. R! e- G; Y( P) q: n

    9 z" B: S  w6 m) U/ T
    # S1 M* W: m2 t2 L9 _, b
    ( b: J, ]" \7 r- w  q3 q, |. M函数:
    9 y- `& M- I( Z$ J$ |3 ^* c2 nfunction dsir = mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa)
    ) ^9 f  t" o1 x. I% e- a4 t9 N' E- M" B$ |
    tau1=10;7 r3 b( a6 `5 t; V& ]( m' U$ t. n
    tau2=15;' Y# H  a2 k3 a2 j( o0 m/ A5 p* z
    tau3=25;
    ' e! F7 g3 B8 L7 s/ j8 ptau4=35;- a# x& d0 l7 u- F" K4 G. v% N5 {" {

    ! m4 R7 o. ?( A: x%rho=@(a) 0.*(a<=tau2)+(0.01*(a-tau2).^2.*exp(-0.2*(a-tau2))).*(a>tau2);" O) M$ ?( I) _/ w- \
    %delta=@(a) 0.*(a<=tau4)+(56^(-3)*(a-tau4).^2.*exp(-0.2*(a-tau4))).*(a>tau4);
    - s+ c2 v. K5 i, L( Z9 M( P%mu=@(a) 0.*(a<=tau3)+(22^(-3)*(a-tau3).^2.*exp(-0.2*(a-tau3))).*(a>tau3);
    4 t$ ]1 n- @/ E%alpha=@(a) 0.*(a<=tau1)+(0.2*(a-tau1).^2.*exp(-0.2*(a-tau1))).*(a>tau1);
    & f1 U) F8 q% E9 `! O
    # |* D) r  ?4 Q7 F( s$ pai=(0:K)*dai;4 T1 G5 P% V3 g/ h
    ai=ai ( : );/ Z8 N0 M1 n0 o, \
    rho=zeros(numel(ai));  
    $ {( M$ ?9 |4 n- j, ddelta=zeros(numel(ai));  / i! M8 Z+ z( k4 w
    mu=zeros(numel(ai));  3 o  x+ D6 W; O" C+ a
    alpha=zeros(numel(ai));  
    & M7 T( p) A7 L9 M5 |# B+ H) v3 E4 N' o8 {
    I=sir(1:K/2);8 G8 B# g  o, ?. R# Q/ a
    R=sir(K/2+1:K);/ r2 |+ ]+ [4 w4 c# O
    T=sir(K+1);3 B$ X: K. }$ E/ m+ }1 B
    V=sir(K+2);4 d( O! H) r6 E! m! I7 s. s" c
    2 g3 X2 F$ L4 _7 J/ c
    dIda=zeros(K/2,1);
    5 W( g- }4 B0 o5 B* j) N2 R. j. WdRda=zeros(K/2,1);
    1 j, V" V( u( M7 Z0 ^for j=1:K# G! @! H  C! ?
        if (ai(j)<=tau2)
    ' z4 [: G/ _; x' E6 o& g3 X        rho(j)=0;0 z0 v$ a# Q2 f) B8 z# ^- m6 N" o  O
        else. M  \) |, v3 d) j1 C# }& b. I
            rho(j)=0.01*(ai(j)-tau2)^2*exp(-0.2*(ai(j)-tau2));
    " @9 A# [, q  B: w    end
    " j* ~4 ^5 k3 S! R$ a0 R7 ~/ u6 Q    if (ai(j)<=tau4)6 O& k7 ]1 Q7 A; D1 c( |3 G
            delta(j)=0;; f: E( U# o+ P' h' A5 @: B$ w
        else2 O. k& b0 ^+ _$ _- i' Y3 d, k
            delta(j)=56^(-3)*(ai(j)-tau4)^2*exp(-0.2*(ai(j)-tau4));
    5 k- A* B& f* H! g% L    end
    # K* {, w7 `& m. ~( T; K! X    if (ai(j)<=tau3)
    ) [0 v( U5 `+ @9 `        mu(j)=0;, f% @; A1 n7 V3 u2 E# M, D
        else
    3 M3 Y) }, x- |0 M! `6 n2 g        mu(j)=22^(-3)*(ai(j)-tau3)^2*exp(-0.2*(ai(j)-tau3));
    % I; p: t% B- Q  P' j/ B    end
    0 q: Q+ F' b7 k3 H    if (ai(j)<=tau1). q4 A* B' l; t( G& v
            alpha(j)=0;
    - X  ?# L$ [. o    else  ~; U5 V& w4 P% }/ \* d+ l9 R: y- \
            alpha(j)=0.2*(ai(j)-tau1)^2*exp(-0.2*(ai(j)-tau1));
    0 E8 y! s6 `; N" ^* M! k1 K% E    end
    % h3 \* ]! z$ Xend
    ' q0 ?+ |+ ]4 n1 G6 S5 L
    ' ~0 G7 o$ _, ?8 U+ c* sfor j=1:K/2
    2 F6 P  Q3 j$ q' B    if(j==1). r# c( A* Q. o: {  _
            dIda(j)=beta*V*T;
    ! D- W, m0 \$ d6 w    else ' i3 A9 ^9 w% A/ [$ t2 @$ f8 c
            dIda(j)=-1*(I(j)-I(j-1))/(aispan(j)-aispan(j-1))...
    * K/ b! Y$ v' U, ~           -delta(j-1)*I(j-1);  / C7 O$ S3 h; ]. h) X# ^
        end, n% n0 L8 J3 _; p8 _
    end. w5 B8 n% F- B( M/ L6 o

    " u1 B$ `7 d! ofor j=K/2+1:K4 s1 U0 z; \3 F$ @! `$ L
       if(j==K/2+1)
    6 f) }9 X9 k% m- {9 j1 V        dRda(j)=1;    % R(0,t)=gamma*I;
    , `: ?6 d+ v. T2 V4 g   else
    ) d7 U( e' g& B% |% O# I, w+ J        dRda(j)=-1*(R(j)-R(j-1))/(aispan(j)-aispan(j-1))...
    . @6 h6 i  h* m: R            +(1-ea)*alpha(j-1)-((1-es)*rho(j-1)+kappa*mu(j-1))*R(j-1);% c  I" @+ M  B- N
        end* @) m/ b( b: [! W
    end
    ( F# u1 ?5 ~1 x! [& W
    / V) p4 l- D- nai_centered = (ai(1:numel(ai)-1)+ai(2:numel(ai)))/2.0; 9 Q. H5 c/ U( W6 `
    value_integral = trapz(ai_centered,I.*R.*rho(ai_centered));
    $ v; u1 {; R1 G7 rdTdt = s-d*T-beta*V*T;            % S=-beta*S*I;
    1 F2 h! @: S# F4 d. b; X- D7 odVdt = (1-es)*value_integral-c*V;     % I=beta*S*I-gamma*I;
    , v+ f# m9 w6 C- G7 J
    ' \0 K3 C7 D. P  `dsir = [dIda;dRda;dTdt;dVdt];
    ; q) V: q/ ~+ B2 V7 I& [( }, C8 `
    , o, |8 N$ r; I, k. O6 N7 K7 ]% Pend0 u3 W( A4 d3 P

    0 x; b5 q0 L. h  T6 q# [& K! Y+ Q0 }一运行就报错:
    , L  Z! n, y( @9 g  g8 K6 T, C' k索引超出矩阵维度。$ S( u' R" `8 ]1 ]6 @

    ( t1 }, D2 @) ?$ g  g出错 mytest (line 63)- D1 {. b' P6 c* {) D# b
            dRda(j)=-1*(R(j)-R(j-1))/(aispan(j)-aispan(j-1))...2 n8 K1 Q2 _/ D  Q, M8 @% b! `. T5 ?
    4 }1 ]# ^- @7 F" T6 E
    出错 maintest>@(t,sir)mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa)
    3 \2 p# G: O3 Q5 e4 k: L" Q- F' R2 A+ C, d) L8 r/ v8 x' G4 z
    出错 odearguments (line 90)
    1 o) R5 E' S2 ~: Kf0 = feval(ode,t0,y0,args{:});   % ODE15I sets args{1} to yp0.5 x8 J! K! |$ Y- [5 Q
    - C3 Y) z1 H5 U
    出错 ode15s (line 150)
    : D8 R# j6 n( Q. A    odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
    ! N! I# p6 D# l0 o
    7 j+ T0 N3 j; o$ J出错 maintest (line 43)* p% O5 Q1 }* U9 n) z/ w) b7 {% U' S
    [t,sir] = ode15s(@(t,sir)mytest(t,sir,dai,aispan,K,beta,s,d,c,es,ea,kappa),tspan,[i0' r0' t0 v0],options);. w! ~3 f" u+ b( [3 N
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-11-24 19:24 , Processed in 0.140625 second(s), 23 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表