EDA365电子论坛网
标题:
随机固定分组合作协同进化NSGA2算法
[打印本页]
作者:
pulbieup
时间:
2020-10-16 14:43
标题:
随机固定分组合作协同进化NSGA2算法
9 ^2 _( V7 G" b5 C
合作协同进化(Cooperative Coevolution)是求解大规模优化算法一个有效的方法。将大规模问题分解为一组组较小的子问题。而合作协同进化的关键是分解策略。
: U9 W0 J# {, r& ]) |
0 J# F, u. e$ B6 ^) j L. f! U
NSGA2算法是一种多目标遗传算法。此文章是随机固定分组的合作协同进化利用NSGA2来优化。
& F; n4 l: D; F& R) e! _
/ y) A9 U; A8 E6 O/ v2 A, v
比如有12个决策变量,我们固定随机优化3个决策变量,那么就将决策变量分成了4组。
, G9 {# {" i- r2 A4 A( @
. Q4 |6 [5 Z6 S! S- b
MATLAB主函数代码:
. j, V% c) @+ A: v
3 Q. U/ G$ ?; K7 H1 `( x" g/ ~) F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear;
global pop
pop = 500; %种群数量
gen = 2; %迭代次数
global M
M = 2; %目标数量
Dim=22; %搜索空间维数(未知数个数)
sub_dim= 2 ;
global min_range
global max_range
min_range = zeros(1, Dim); %下界
max_range = ones(1,Dim); %上界
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
divide_datasets();
global answer
answer=cell(M,3);
Dim_index = ones(1,1)*(1:Dim+4);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
chromosome = initialize_variables(pop, M, Dim, min_range, max_range, Dim_index);
chromosome = non_domination_sort_mod(chromosome, M, Dim);
result = 1;
while gen ~= 0
subgroup = rnd_divide(Dim, sub_dim);
for i=1:length(subgroup)
subgroup{i}(sub_dim+1)=Dim+1;
subgroup{i}(sub_dim+2)=Dim+2;
subgroup{i}(sub_dim+3)=Dim+3;
subgroup{i}(sub_dim+4)=Dim+4;
[temp_chromosome] = nsga2(chromosome(:,subgroup{i}), sub_dim, subgroup{i});
chromosome(:,subgroup{i}(1:sub_dim)) = temp_chromosome(:,1:sub_dim);
end
chromosome = nsga2(chromosome, Dim, Dim_index);
chromosome = non_domination_sort_mod(chromosome, M, Dim);
gen =gen - 1;
progress = 1-gen/10
end
plot(chromosome(:,Dim + 1),chromosome(:,Dim + 2),'*');
xlabel('f_1'); ylabel('f_2');
title('Pareto Optimal Front');
: k- O; D4 W) G7 Q
) y8 f$ N6 T' E
; b$ l6 O5 K0 @7 \
随机分组代码:
# N4 I- _& _/ N0 i3 t5 p- ?" |
7 M$ b# p# X+ |2 s+ U
% random grouping
function group = rnd_divide(dim, subdim)
dim_rand = randperm(dim);
group = {};
for i = 1:subdim:dim
index = dim_rand(i:i+subdim-1);
group = {group{1:end} index};
end
end
1 M9 E9 s/ J2 ^0 z2 M
! b; T" F! ^5 G' S# g2 ? i
V I# H* i9 o [
3 \2 k% H% M% x. `2 N( J0 ~
+ r' Y4 n$ y# Z( S
* b5 n% G9 H5 ` r# y4 m& {$ K
作者:
younicp
时间:
2020-10-16 15:21
随机固定分组合作协同进化NSGA2算法
欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/)
Powered by Discuz! X3.2