EDA365电子论坛网
标题: NSGA-II多目标遗传算法概述 [打印本页]
作者: pulbieup 时间: 2020-9-9 18:45
标题: NSGA-II多目标遗传算法概述
本帖最后由 pulbieup 于 2020-9-9 18:47 编辑
4 w/ ]: }8 w9 B! E/ _$ R6 |7 Q. {$ G2 H5 Y" h& V1 W
什么是NSGA-II
Non dominated sorting genetic algorithm -II
6 i% k W( @5 o1 Y" h aNSGA-Ⅱ是目前最流行的多目标遗传算法之一,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好的优点,成为其他多目标优化算法性能的基准。
. p/ q$ `9 f! h% L: [NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:" g. B) @ }2 m& i9 t0 k
①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;& m0 J* W* @* X- F7 s p; `
②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;
: w0 B* Q# v, Z+ J6 E: b3 _6 ]8 v4 P③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
算法目的:针对当前M个个体,选取N个个体(M>N)。
1 A0 f. Y+ r0 E6 \$ ^- fNSGA-II关键算法(步骤)( v2 f+ r# C2 \4 j+ M2 g
1.先对M个个体求pareto解。然后得到F1,F2……等这些pareto的集合。# _/ [1 Y. s+ O4 U1 a- B6 l
2.把F1的所有个体全部放入N,若N没满,继续放F2,直到有Fk不能全部放入已经放入F1、F2、…、F(k-1)的N(空间)。此时对Fk进行求解。
9 g1 h) k) d) i b0 o4 V5 G0 p& g9 f3.对于Fk中的个体,求出Fk中的每个个体的拥挤距离Lk(crowding distance),在fk中按照Lk递减排序,放入N中,直到N满。
NSGA-II关键子程序算法+ h" z3 k& S; c
1. 快速非支配排序算法
; @! Q3 `6 q: r) l多目标优化问题的关键在于求取Pareto最优解集。NSGA-II快速非支配排序是依据个体的非劣解水平对种群M进行分层得到Fi,作用是使得解靠近pareto最优解。这是一个循环的适应值分级过程,首先找出群体中的非支配解集,记为F1,将其所有个体赋予非支配序irank=1(其中irank是个体i的非支配序值),并从整个群体M中除去,然后继续找出余下群体中的非支配解集,记为F2,F2中的个体被赋予irank=2,如此进行下去,知道整个种群被分层,Fi层中的非支配序值相同。
" `+ k e7 [5 X% G) o' H% e: F2.个体拥挤距离: D7 `0 H+ K" X3 s8 J- a/ ~- I D
在同一层Fk中需要进行选择性排序,按照个体拥挤距离(crowding distance)大小排序。个体拥挤距离是Fk上与i相邻的个体i+1和i-1之间的距离,其计算步骤为:5 C4 |8 x6 H1 u4 l
①对同层的个体距离初始化,令Ld=0(表示任意个体i的拥挤距离)。: _; i- B8 H3 e8 g
②对同层的个体按照第m个目标函数值升序排列。. P6 u! T p: t9 `
③对于处在排序边缘上的个体要给予其选择优势。& v1 |" W( c! g1 k) `7 o
④对于排序中间的个体,求拥挤距离:
(其中:L[i+1]m为第i+1个体的第m目标函数值fmax,fmin分别为集合中第m目标函数的最大和最小值。)
7 G, W" v5 O: n4 }: N⑤对于不同的目标函数,重复②到④的步骤,得到个体i的拥挤距离Ld,有限选择拥挤距离较大的个体,可以是计算结果在目标空间均匀地分布,维持群体的多样性。
6 I4 C$ Z; w6 \0 k4 {3.精英策略选择算法% O! ]" g+ ?# x; {7 }1 G
保持父代中优良个体直接进入子代,防止Pareto最优解丢失。' d H* C# J$ X( ^, Q5 j4 |+ r
选择指标对父代Ci和子代Di合成的种群Ri进行优选,组成新父代Ci+1.
( w2 I- N0 ~; V. }5 ]6 J先淘汰父代中方案检验标志不可行的方案,接着按照非支配序值irank从低到高将整层种群依次放入Ci+1,直到放入某一层Fk超过N的限制,最后,依据拥挤距离大小填充Ci+1直到种群数量为N。
注释:, J/ x6 S5 V; R
多目标规划中,由于存在目标之间的冲突和无法比较的现象,一个解在某个目标上是最好的,在其他的目标上可能比较差。Pareto 在1986 年提出多目标的解不受支配解(Non-dominated set)的概念。其定义为:假设任何二解S1 及S2 对所有目标而言,S1均优于S2,则我们称S1 支配S2,若S1 的解没有被其他解所支配,则S1 称为非支配解(不受支配解),也称Pareto解。这些非支配解的集合即所谓的Pareto Front。所有坐落在Pareto front 中的所有解皆不受Pareto Front 之外的解(以及Pareto Front 曲线以内的其它解)所支配,因此这些非支配解较其他解而言拥有最少的目标冲突,可提供决策者一个较佳的选择空间。在某个非支配解的基础上改进任何目标函数的同时,必然会削弱至少一个其他目标函数。
作者: SsaaM7 时间: 2020-9-9 18:59
NSGA-II多目标遗传算法概述
| 欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/) |
Powered by Discuz! X3.2 |