EDA365电子论坛网
标题: MATLAB全部的随机函数(一) [打印本页]
作者: zxcvbvbnmn 时间: 2020-8-31 14:56
标题: MATLAB全部的随机函数(一)
Matlab内部函数
a. 基本随机数
Matlab中有两个最基本生成随机数的函数。
1.rand()
生成(0,1)区间上均匀分布的随机变量。基本语法:
rand([M,N,P ...])
' S8 z$ e- u, h/ \3 y9 t
生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
rand(5,1) %生成5个随机数排列的列向量,一般用这种格式
rand(5) %生成5行5列的随机数矩阵
rand([5,4]) %生成一个5行4列的随机数矩阵
$ C5 [0 L. F, Z% ]0 A
生成的随机数大致的分布。
x=rand(100000,1);
hist(x,30);
1 @2 i4 V, y2 N' }+ a+ z5 S* e# C) Q
由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用)
2.randn()
生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。
randn([M,N,P ...])
1 P- o- f( k# z生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
randn(5,1) %生成5个随机数排列的列向量,一般用这种格式
randn(5) %生成5行5列的随机数矩阵
randn([5,4]) %生成一个5行4列的随机数矩阵
2 }' b* s( q! G+ ?
生成的随机数大致的分布。
x=randn(100000,1);
hist(x,50);
$ A" f- [( @& j; M( i0 R由图可以看到生成的随机数很符合标准正态分布。
b. 连续型分布随机数
如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。
3.unifrnd()
和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法
unifrnd(a,b,[M,N,P,...])
`$ H" J0 R! B) W3 p) ~生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
unifrnd(-2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式
unifrnd(-2,3,5) %生成5行5列的随机数矩阵
unifrnd(-2,3,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数都在(-2,3)区间内.
6 |, R, f" t9 n% n生成的随机数大致的分布。
x=unifrnd(-2,3,100000,1);
hist(x,50);
. H/ W# s7 z: w% w/ m, X由图可以看到生成的随机数很符合区间(-2,3)上面的均匀分布。
4.normrnd()
和randn()类似,此函数生成指定均值、标准差的正态分布的随机数。基本语法
normrnd(mu,sigma,[M,N,P,...])
# K0 D9 o2 ?/ v! ]
生成的随机数服从均值为mu,标准差为sigma(注意标准差是正数)正态分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
normrnd(2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式
normrnd(2,3,5) %生成5行5列的随机数矩阵
normrnd(2,3,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的正态分布都是均值为2,标准差为3.
1 B0 Z9 Q) ?# Y
生成的随机数大致的分布。
x=normrnd(2,3,100000,1);
hist(x,50);
3 y: t2 @4 z) M
; ^+ f9 n- S$ M/ z5 G. S o8 d+ a2 a, v: [, n3 M9 D' m0 H" G
如图,上半部分是由上一行语句生成的均值为2,标准差为3的10万个随机数的大致分布,下半部分是用小节“randn()”中最后那段语句生成10万个标准正态分布随机数的大致分布。
注意到上半个图像的对称轴向正方向偏移(准确说移动到x=2处),这是由于均值为2的结果。
而且,由于标准差是3,比标准正态分布的标准差(1)要高,所以上半部分图形更胖(注意x轴刻度的不同)。
5.chi2rnd()
此函数生成服从卡方(Chi-square)分布的随机数。卡方分布只有一个参数:自由度v。基本语法
chi2rnd(v,[M,N,P,...])
+ J# D# y5 o8 @" R
生成的随机数服从自由度为v的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
chi2rnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式
chi2rnd(5,5) %生成5行5列的随机数矩阵
chi2rnd(5,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的卡方分布的自由度都是5
- S$ H- E1 [4 J
生成的随机数大致的分布。
x=chi2rnd(5,100000,1);
hist(x,50);
$ ?7 T' _' @4 Q3 }$ e# h5 I6.frnd()
此函数生成服从F分布的随机数。F分布有2个参数:v1, v2。基本语法
frnd(v1,v2,[M,N,P,...])
/ [* O+ X8 ~3 [生成的随机数服从参数为(v1,v2)的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
frnd(3,5,5,1) %生成5个随机数排列的列向量,一般用这种格式
frnd(3,5,5) %生成5行5列的随机数矩阵
frnd(3,5,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的参数为(v1=3,v2=5)的F分布
* n y5 H$ d' Z& Q, E
生成的随机数大致的分布。
x=frnd(3,5,100000,1);
hist(x,50);
5 Y/ x3 m% j# R* G从结果可以看出来, F分布集中在x正半轴的左侧,但是它在极端值处也很可能有一些取值。
7.trnd()
此函数生成服从t(Student's t Distribution,这里Student不是学生的意思,而是Cosset.W.S.的笔名)分布的随机数。t分布有1个参数:自由度v。基本语法
trnd(v,[M,N,P,...])
( o0 }$ l7 }. y g8 Q5 w生成的随机数服从参数为v的t分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:
trnd(7,5,1) %生成5个随机数排列的列向量,一般用这种格式
trnd(7,5) %生成5行5列的随机数矩阵
trnd(7,[5,4]) %生成一个5行4列的随机数矩阵
%注:上述语句生成的随机数所服从的参数为(v=7)的t分布
( y2 G3 ~& s' }- n1 A# K9 u生成的随机数大致的分布。
x=trnd(7,100000,1);
hist(x,50);
) ^5 }0 h- Q' K. [' c
可以发现t分布比标准正太分布要“瘦”,不过随着自由度v的增大,t分布会逐渐变胖,当自由度为正无穷时,它就变成标准正态分布了。
接下来的分布相对没有这么常用,同时这些函数的语法和前面函数语法相同,所以写得就简略一些——在视频中也不会讲述,你只需按照前面那几个分布的语法套用即可,应该不会有任何困难——时间足够的话这是一个不错的练习机会。
8.betarnd()
此函数生成服从Beta分布的随机数。Beta分布有两个参数分别是A和B。下图是A=2,B=5 的beta分布的PDF图形。
9 [8 K0 M# ?3 i
生成beta分布随机数的语法是:
betarnd(A,B,[M,N,P,...])
; D& u& C3 m3 Z2 k- v0 I9.exprnd()
此函数生成服从指数分布的随机数。指数分布只有一个参数: mu, 下图是mu=3时指数分布的PDF图形
8 `/ ?5 L$ \* f. t
生成指数分布随机数的语法是:
betarnd(mu,[M,N,P,...])
8 J# l+ D2 b, A8 w: k7 o10.gamrnd()
生成服从Gamma分布的随机数。Gamma分布有两个参数:A和B。下图是A=2,B=5 Gamma分布的PDF图形
0 j* B& Q1 A( a: y0 n* y/ ?
生成Gamma分布随机数的语法是:
gamrnd(A,B,[M,N,P,...])
7 c% p$ n% O) `4 F6 ^+ {/ @
作者: shapeofyou888 时间: 2020-8-31 15:46
来学习学习
| 欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/) |
Powered by Discuz! X3.2 |