EDA365电子论坛网
标题: MATLAB之Filter Data [打印本页]
作者: mytomorrow 时间: 2020-8-24 16:22
标题: MATLAB之Filter Data
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。
在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。
6 h) G7 y- l" J6 x" m
% q. g6 r) T8 _在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。
滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data
+ Y$ \+ u* G0 N7 d滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。
5 T( K' m5 V: w1 d6 }% bThe following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data.
(以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。
8 B+ C* e0 x/ \$ z7 D# v1 E- L2 S- T0 B
clc- @) P8 n. S: J! y0 p0 _
b I$ H, d( ?- * b4 D+ h/ p6 N$ k v2 X- x5 V4 n1 e
7 `6 C2 ~, [9 Z( D' Oclear
5 ?4 s0 }% _6 E u* U: V, @) s$ l9 Z
- 4 E- l- E0 @' |0 Q" T) A
5 w) m3 A8 X7 v8 E, v9 m7 ?' Z
close all# H/ J; U5 N/ i" e% O. V7 r
) t R# C! _! s! K+ u' Q8 h
- , W, N, o! O/ o. c1 G
, f5 y6 c8 B' N0 T" Z' z0 a$ a a' v
9 F ?! a/ E4 o4 C
- / S7 n7 P& g3 C
3 ~: Y3 R" j/ n% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.7 q3 G8 T8 i1 T5 |( Q# y
' P2 g6 N3 t2 `5 Z3 C
- K" Y$ F4 m3 o
3 }7 Y' m! a% Eload count.dat- n! E _+ H. N* C
+ f1 S& f1 j+ o5 L) ~ - 9 t' B8 M% K- f* P3 a9 z \
, F y: g4 {; ]- d e
x = count(:,1);# ]: {7 T' X) @. V
9 {; D) n8 @. o" e# |# ?
5 q" p$ E2 z4 R# |
# ^ W6 t8 h- T+ i2 A0 L, c
& ^: g2 t. c: [9 i7 n) G
" w6 j6 t* N* @& {( x
4 a& V8 P X& w. |6 w3 p2 H$ s2 W
; e$ v- G& V3 g6 D/ J; n; i( o% l9 {% Create the filter coefficient vectors.
& N4 L: o9 `# v( ?
1 Q( W- T. m! _; w2 h0 A+ ?
0 b: V8 J' y6 o9 k: h! @- ~3 c1 j0 O) p: i+ C
a = 1;
9 X& K) g' e5 o" y2 n
& D% ] e7 L3 l! e( j- 9 ~- M% B* A0 p: X* A3 R, ^; p
- V6 e! b$ M4 o6 I
b = [1/4 1/4 1/4 1/4];
( j& x$ `8 A- o! i4 t7 \, ]# @5 h* {+ z- w) M0 y
! t# k9 o+ g2 e* o" z9 m: U, P( P6 L8 t7 [
' _) Y0 _, X0 r: C L7 g
( x: E$ L0 E7 a* o
- 3 H. w6 v/ l# A
1 ^4 f. \2 u! M( D( Y
% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.1 G( i; Q; A! N
! s6 @' N7 q. a9 b0 U
% _# T8 b/ ~7 R: Q( z1 @; m
$ e+ _2 l9 z- {: |' Z C' j9 w$ zy = filter(b,a,x);2 w2 y4 r! W$ Q g
: c9 @0 K9 d$ S0 d8 S' [
- 6 f# v: v" }& V
7 ?; O% S* \% `8 E: k/ t
- y% S1 c! E0 ?7 Y6 J
7 v; S: d: n6 F: z1 ~
, n' ?: c- h; U, \; L* q4 z% t% A, d8 ^4 g" B$ H; r) e8 G
t = 1:length(x);
`( v% E" K5 t8 @" I
& J# t# m, n8 N4 [& W" {
( S" s: w2 ]! Y3 |: I
1 g4 y. ~$ K/ ~) ^plot(t,x,'--',t,y,'-'): g, y4 \: T9 }: m6 w, Q: r1 y
, s G# H) I; R3 }# M
6 P3 U/ a0 H- Q) D7 K x3 M2 d3 ^6 S0 X, z7 S# N9 J/ y5 t8 P
legend('Original Data','Filtered Data')& ?* p' a5 R1 l1 o6 O
/ T( S7 U; m( ` R' s
( k8 E( v1 J, W7 ]% [9 N, v6 z* y
4 w8 h3 x0 ?6 E; q
% z* l5 {! C, f) f, [( H) ^! b6 F0 b p a: A% W
6 L' G3 B2 v) F: M
Modify Amplitude of Data
8 {/ |' j+ }( x6 [3 c) |3 i& a( uThis example shows how to modify the amplitude of a vector of data by applying a transfer function.5 c; c' p' f0 t" T- v8 J: V' `
In digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation
此示例显示如何通过应用传递函数来修改数据矢量的幅度。* u' D& e1 O1 f
在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换
+ t4 n4 f* N0 F7 x2 o
7 r& n. |% V8 h D7 t6 g
is the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat.
0 \- H6 K- c3 @
8 P0 M" f, ^8 K" x* }; {clc
) q6 u3 C; q: e3 U7 f" b! @4 H. `& w) E: i- Z! O
- 1 {' h/ U8 J) `3 `" q$ w9 Z$ ~2 z) [
* V6 @+ k2 D8 f+ y8 R! s9 E1 w/ n5 Oclear6 b( B& r0 @/ ?
0 o7 I1 i0 x- C
$ E9 h+ X. k6 D( ?8 H4 u' m0 `
% }% I5 w" {: T5 i0 s; t xclose all
" I" Y' V6 t# e% `8 o* X
! s% X8 H0 u; C; m- + ~; @5 J" v" T5 b4 V0 r
- P- B+ e B% Q- u6 ?- ~ ?
, f3 V. o4 R" V0 i
( U% w7 P0 Q I( t, r' Y1 x
& ~. r4 {9 y4 |( b; P% W9 e0 a
4 o" I1 V& Q" c5 C# D7 G- Q ]% Load the data and assign the first column to the vector x.
; M+ o- |% p0 {+ V/ K4 T
) Z- h# R+ X" O9 c! D7 p/ O) O
?( ] ?+ C7 `- B8 Z
5 z6 i- c$ a+ G% p( o5 H/ Eload count.dat
) V& a. U* \% }3 t' @! o7 S# y
$ a6 U0 ]- t7 Z: |. r6 U- ! y2 K, |1 C; [
5 q9 p( B3 t- R% ~# ^
x = count(:,1);
+ f! `$ V' Y, O2 y6 v$ k* L: b; q2 u6 Y9 P4 ]
" l: G) G; z' j/ T* `, b# `$ ^( g( E/ p, h- R- x0 i. _
1 K% X% U* ] U5 _6 A
7 u; ^ `0 C( {! s7 a+ [8 W
( d" j! t. @* _# h. v6 d2 W; y( p* G# f8 n% D/ I
% Create the filter coefficient vectors according to the transfer function .9 S' p& E/ K d1 E
. g3 L# ~( L+ Q
) ^ C( ]& X- ~* J5 p1 v% v
3 L9 J2 `) M7 K# \( f7 ma = [1 0.2];" u) z/ C [' z5 P! \ S x
/ E" p4 v% ~. t k
- ( {2 e: |1 I6 n% o
A* l& t. f1 a/ O) Q$ `5 Q1 A
b = [2 3];; j9 f& B X$ d$ F8 b, U
& y+ A1 q/ r: g* |
- 0 Z L% z$ p% ~, \$ \8 I
$ L0 Z& j+ T1 f- |, _9 ~5 D
, P) g2 @, h+ A+ c9 w c8 V$ k( ^3 T5 u- S
- ! M- o5 G* Z& l9 q$ l
& C8 g- | J8 i# e1 T/ t% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.
3 p2 F! R( q/ v8 L* J$ n+ ]( R- b( H- k
& r3 t) K2 H7 Q5 ^9 ^7 T& Q7 ^3 c - 6 H& c- L! A, D: H
+ B9 W" e" y0 F
y = filter(b,a,x);& n: z: y9 N/ t* k3 L
9 E) X! U7 M; q k1 y - 8 G$ L0 K( t5 \0 S* E, ?. y# x& N
4 v$ W' _: j4 }3 p" e) o5 Q
6 I2 b) n# G8 {5 X- z5 A. o" e2 ^& {$ `: W
t* a1 Z- W8 c- J k- w# k( _& L) O- i8 O
t = 1:length(x);; l3 P+ o: w8 f9 {2 d& i' R; G3 {
, ~. q9 H8 @- y: G& y7 \- ! l- {* ^ H; ^& S) W! j
H9 |1 Z+ A+ o) c; l
plot(t,x,'--',t,y,'-')1 ]. q7 d: V6 H4 t& Q3 a: g
- \! S5 ^" f( J+ o- m
; ]0 T h" n+ j: |6 P+ n% y% d2 r% ?+ Q% j* j
legend('Original Data','Filtered Data')
* n; }! g% A) T2 g# p/ K. F7 ~' I& q' _( z5 Y
- ) H/ o0 [0 A6 s j3 Y/ y) D) G T/ H& `
2 e' s$ v, f, V$ s o
; L% m+ ~& |1 f7 r1 h* n1 W$ d x5 k# v' {
# u1 S* p' g0 q8 f0 A
5 W. Z7 c b5 S J/ C
. y, }5 [5 u8 k. E" J
k& G5 j \) e; L
作者: kekek 时间: 2020-8-25 09:08
来学习一下
| 欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/) |
Powered by Discuz! X3.2 |