EDA365电子论坛网

标题: NSGA2算法MATLAB [打印本页]

作者: piday123    时间: 2020-5-20 10:18
标题: NSGA2算法MATLAB
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 9 S" J( i: A5 O( {/ [
2 V+ u: ~; [: \( v* A( }+ ~

. x6 {& s1 n1 \( F- LNSGA2的过程为:* d0 Q+ H& h1 ~2 v5 L( b3 U

' B+ [" U/ k& P, q' ^1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N! t7 U/ Y4 ^, T( [
0 ~# }5 q* j, R7 V, T
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..* G. V  G& s' \: G: U8 ^+ x8 w
! `' |1 |( |4 }1 l  N. G
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F37 w2 g1 G, w% ^5 O
: g2 F* c! B" N( J& B
下面是完整版的代码:
0 h. W  e' h& U' F, r9 u5 ~$ P8 _
①nsga2-optimization.m' M# L" M% J+ G$ {
: T% F7 A4 D3 J" A' W
function nsga_2_optimization/ x+ H( w, Q+ [/ y" _- E8 Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%, r6 z4 `0 U7 a+ l% ?; y  _/ @7 r
%此处可以更改
# f, {0 `# w5 n3 p0 U%更多机器学习内容请访问omegaxyz.com
- ~3 M$ C3 C) P( npop = 500; %种群数量# p+ _3 f; H. G6 G
gen = 500; %迭代次数
+ D4 w8 ?' R1 TM = 2; %目标数量
& {4 O9 f) L+ i& x# `' [) d' ZV = 30; %维度: o# L. B% }+ N' n- @. w
min_range = zeros(1, V); %下界8 G5 `5 R* u& }( K, B+ y
max_range = ones(1,V); %上界
6 n9 p3 ?6 g+ [! c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3 ]/ G6 Z4 t3 H1 z" q& G' E4 [" N( b
chromosome = initialize_variables(pop, M, V, min_range, max_range);7 o% H7 \- H8 Z- Q
chromosome = non_domination_sort_mod(chromosome, M, V);3 k& P) @' @, n5 x
  \  h3 |9 F7 B( O' m! M8 ?) f
for i = 1 : gen/ S* s/ Q0 p3 I, b4 ?# f; u
    pool = round(pop/2);" r7 P- B" `. y* j# N
    tour = 2;
  Y6 q2 b* \9 R% d3 {3 T    parent_chromosome = tournament_selection(chromosome, pool, tour);5 a; }) X9 A# f* ^/ a2 k( W
    mu = 20;
% d& B, J+ E$ L$ B' R" H' w    mum = 20;
: L& C& {: k' x7 y! L6 \6 r    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
& m; j, O  t1 m, p! F5 L5 h% E3 p6 @    [main_pop,~] = size(chromosome);. r' Q. K) H$ H) d9 Q* j
    [offspring_pop,~] = size(offspring_chromosome);
4 L0 R; u6 w2 a    clear temp
8 G1 |9 I$ h, F2 s# e# t7 X    intermediate_chromosome(1:main_pop,:) = chromosome;
# X" H( @, U- W7 D9 n8 C    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;! g# [* S3 m: i
    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
& T  M; O: o$ i3 q    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);, Z! n5 @0 O; D& y! w  F# e5 E
    if ~mod(i,100)
+ }, C5 T+ I7 n6 `* M        clc;( l# u% R. w3 `# J: u0 q3 D
        fprintf('%d generations completed\n',i);6 T8 [* t* _: h( n- e& L
    end
5 T% M- I4 n$ s( U' \end2 \0 h9 X) G3 J5 ^( K

% d; K3 U9 j* ]8 o  g) N7 O7 wif M == 20 d. e' v  m) D
    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');1 \3 c+ N: j; B& [& I7 S& ]
    xlabel('f_1'); ylabel('f_2');
3 T7 r" Y3 L7 y0 H9 B    title('Pareto Optimal Front');- ]( [: F8 F  d
elseif M == 3  |% l3 }2 n- _
    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
# [& K* ^! r0 i& o* v: W    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');- f7 q8 ], V1 [& e1 c7 |
    title('Pareto Optimal Surface');' b3 n2 |5 U; i' w  @  ^' b
end
- p& g( ]3 o0 f! \1 X* `$ X
2 t4 q$ G4 y% I" b% }9 w" r- k& d3 p9 I4 n' j% f( }
②initialize_variables.m
$ `% I& K8 K! L1 B* r4 a& D8 Y9 F% a+ r
function f = initialize_variables(N, M, V, min_range, max_range)2 O& I& L) \" j6 x4 `6 x7 |- D
min = min_range;
/ k" I% K9 I, a6 i6 R2 T/ p) H: umax = max_range;3 _# |1 w+ U! ^& [
K = M + V;: W' l' A  b9 z) |, }/ h
for i = 1 : N
: b1 }$ S& ?7 \; m! \    for j = 1 : V
8 S8 k) D6 x' \) |        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
$ w7 o, n& q8 T% k5 a" {    end' X- g* I( a7 K$ x; U
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
2 D3 t* M' m& N) D: X9 {end0 x5 }9 k' Z  {' M

# C3 H& T0 L# Y+ [+ }
& }8 b, X8 ^4 A③non_domination_sort_mod.m
3 m$ t7 y& ?- k% F+ |8 w8 P7 U  A% T2 Z
function f = non_domination_sort_mod(x, M, V)
# U! A; R0 i- ]) k: Q7 S: c[N, ~] = size(x);0 Y3 O2 P9 J, T' e; c8 ^( n" Z& \
clear m% w+ N8 L" k4 x$ w
front = 1;
2 {% O( u& F) G5 `F(front).f = [];
: z, m5 _! o& |9 _" O9 n8 p5 o, K: windividual = [];3 O* f( O; @" i5 K1 N& z; P

/ g' j/ {. I: j* qfor i = 1 : N
) h* k: z; y6 ]: Q4 G5 [8 a8 ?0 |    individual(i).n = 0;5 z4 w( K. y! w/ o4 ]  \8 c; }
    individual(i).p = [];( W; O5 q7 y) x* h
    for j = 1 : N) J) m# w. }, o3 V5 U; F' M
        dom_less = 0;6 e: O- b3 |" J* g
        dom_equal = 0;  t* l- H7 j2 A
        dom_more = 0;
. t# G) y- k3 j        for k = 1 : M
3 |/ a- Q: Z- [" V            if (x(i,V + k) < x(j,V + k))) J4 x% n7 `7 {
                dom_less = dom_less + 1;8 p3 r1 x4 L; j. g
            elseif (x(i,V + k) == x(j,V + k))8 T0 Q5 W' B- ]6 B$ N. R! G+ F
                dom_equal = dom_equal + 1;, S$ ], E: q' T* R# h1 W
            else
- K  G% r6 [! l! Y3 Y5 r                dom_more = dom_more + 1;: q' u" S& _1 M( Q) z  c
            end
" W' u& [/ @+ x$ f$ V- {( S        end
# u' ^! W1 ]( u5 e4 M) a        if dom_less == 0 && dom_equal ~= M1 p  d& J% B, L3 x6 A
            individual(i).n = individual(i).n + 1;  ~1 w1 O/ D' Q0 C/ H$ c& W
        elseif dom_more == 0 && dom_equal ~= M
  y% k+ H/ Y2 o! a& b/ v            individual(i).p = [individual(i).p j];
7 y5 p& z4 w6 q; o        end
- r8 }4 o9 a" C: \4 n3 ]    end   * j; f2 {! T9 u1 M2 ]
    if individual(i).n == 06 Y0 x  }7 f5 `! r- p' D2 x* [5 b
        x(i,M + V + 1) = 1;* J$ n9 K- Y9 A. S9 W
        F(front).f = [F(front).f i];
' J6 E  O! t+ }    end4 y1 v. u+ S* V  C, a' q8 \: ?
end
3 ]: A9 {, S; r! P3 E4 s7 Y# _2 m) e# X* A9 ~& d% U
while ~isempty(F(front).f)- _( q/ |8 v6 S- t, d" c* L# A
   Q = [];
. |4 }' m8 k6 U4 C( E   for i = 1 : length(F(front).f)( @% A/ k3 a7 I4 I; r, m, s
       if ~isempty(individual(F(front).f(i)).p)
) ~  i4 a3 Y3 B- ^# I            for j = 1 : length(individual(F(front).f(i)).p)$ \- m. d) ^; R0 j# n: H. @
                individual(individual(F(front).f(i)).p(j)).n = ...$ f. _9 M3 b" X# M1 i; t. r' @
                    individual(individual(F(front).f(i)).p(j)).n - 1;
5 e) i$ ?3 n/ b* L, p! o  q6 H3 W                if individual(individual(F(front).f(i)).p(j)).n == 0
7 m0 b4 L- F0 G; d                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...6 {* ~- {8 w3 o3 b7 x7 W: ^7 H
                        front + 1;
9 W6 E* N7 {2 n6 y% ~                    Q = [Q individual(F(front).f(i)).p(j)];
3 B6 b- A  a% }                end
! y2 Z8 g4 s$ o6 X  D5 s) v            end( G8 U* Z. N1 ?+ K- P# p  Y9 a
       end! `, u5 ?* J( d1 S* y
   end
8 t9 b8 i& q( Y   front =  front + 1;) b0 P& g. t8 _7 B
   F(front).f = Q;5 `$ S' \- b: @4 A' ~: e
end
. Y& b( E9 m: k0 @% T3 h: n- \7 A( x- T) I: ~/ v2 y* ?
[temp,index_of_fronts] = sort(x(:,M + V + 1));' ^/ o& j2 s- R' `3 x. O
for i = 1 : length(index_of_fronts); W% t+ q6 N7 Q4 K* o0 w& V
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
" m  z  p  ^  x& k5 }3 _end$ n; B: V& O  x5 G! [3 B
current_index = 0;/ p% P6 D, A) H

) n2 U8 F% b7 f0 G. U%% Crowding distance
1 F' v1 H4 y- B  {. X5 l! [' V" a" `, e% w/ `! @: l+ K
for front = 1 : (length(F) - 1); a6 j! g6 r: |% B
    distance = 0;
7 Q: k5 o0 D2 I    y = [];
1 S/ n" u8 O; N5 o    previous_index = current_index + 1;) `/ ?1 q& u: G- s6 Y; J6 z
    for i = 1 : length(F(front).f)
, I/ P( d0 H6 T% v4 L$ u        y(i,:) = sorted_based_on_front(current_index + i,:);, n3 d; C; b& H) }" m
    end
2 D% L6 R: z$ P# W. m$ f* ]  p3 N    current_index = current_index + i;/ j4 b4 X+ v3 `6 k/ d
    sorted_based_on_objective = [];% }2 e5 c8 ?1 q; a
    for i = 1 : M. H* U# z6 R- ^4 t( T8 P
        [sorted_based_on_objective, index_of_objectives] = ...- O/ t, g! E( u4 H& a# e* U3 k
            sort(y(:,V + i));/ t& i4 i) s; d0 D
        sorted_based_on_objective = [];& ]) w0 m. A3 H( W+ v! N( f
        for j = 1 : length(index_of_objectives)
7 p- i- T, H; t5 ]5 B0 L            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
% i$ k. ~' n7 G1 v4 e        end" h, n" o7 k% w. k. h1 T, A9 {
        f_max = ...* R$ y) e1 }7 E4 r) M! R+ \
            sorted_based_on_objective(length(index_of_objectives), V + i);* b" P# a& w1 v1 Z. B$ R
        f_min = sorted_based_on_objective(1, V + i);
3 V8 l5 D- |5 ~9 H% x6 Q: a. A        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...5 N6 u; k9 _, g: k8 g
            = Inf;
5 P) I( ?- x3 _2 W1 E6 [        y(index_of_objectives(1),M + V + 1 + i) = Inf;
5 ]3 D$ [0 b8 Q* Q! n* m         for j = 2 : length(index_of_objectives) - 1  G6 A1 a! A, b, R
            next_obj  = sorted_based_on_objective(j + 1,V + i);
" n  O; h6 k. Q            previous_obj  = sorted_based_on_objective(j - 1,V + i);
/ ~! k! M) J* f+ B; ?6 f$ U            if (f_max - f_min == 0)3 z+ G, T. j7 c5 ?/ L
                y(index_of_objectives(j),M + V + 1 + i) = Inf;3 p6 ^% F2 i$ `  V7 g
            else
. h6 s7 P  |+ Q5 _# U( m                y(index_of_objectives(j),M + V + 1 + i) = ...
. ?. G1 y/ h& N* R2 z% C# v0 J; `5 \                     (next_obj - previous_obj)/(f_max - f_min);7 i& Y1 k& D' G
            end
, K5 F  K5 N! e- J0 Z         end% u7 a, g8 \, @/ {! r
    end
% D6 [. s; ?8 }3 X; d    distance = [];
5 Z$ w. c0 t6 I! F' c+ K    distance(:,1) = zeros(length(F(front).f),1);
' h' {/ o2 [8 ?0 a8 a    for i = 1 : M
9 U2 Z; o3 n+ t6 H6 m+ C+ J        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
( Y& j) B* I6 }0 [# f4 C' W3 c    end# b2 j. {1 G3 D1 A
    y(:,M + V + 2) = distance;& N7 v% t5 W8 M
    y = y(:,1 : M + V + 2);
! \$ ]9 w/ R1 H1 ?; p) _8 v; l# p5 n( R    z(previous_index:current_index,:) = y;! H+ u# u. f) ?/ F7 ]. K
end4 H3 p& F  W' M! [$ |5 e; D; w! b
f = z();
0 |# c2 H3 z) y
, n1 J7 m4 z" w- i5 @& C
* h' o/ V' O6 Q6 h' E④tournament_selection.m
4 P7 N- G, c! F$ ~  o
/ C9 y( J( v& w( Q6 U& s; Yfunction f = tournament_selection(chromosome, pool_size, tour_size)2 q9 x/ q' A5 _
[pop, variables] = size(chromosome);
9 o, Y- c) O9 Crank = variables - 1;
; n4 J( g2 [& A: k$ F0 ]4 ydistance = variables;
  T, U  J# a" nfor i = 1 : pool_size( i% D( u3 v! f( L3 M1 `' n
    for j = 1 : tour_size2 u, N  d: }' |8 }; u1 s" ?
        candidate(j) = round(pop*rand(1));
+ E# L/ @2 T: G/ Y3 H        if candidate(j) == 0
- }- X  x! d1 I, v, _; g            candidate(j) = 1;6 u9 K! _, E- ^8 R+ K1 e
        end
6 i% k' a; A+ r/ \% Q6 n2 ^* a3 @        if j > 1
. N/ J4 F/ V; c            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
' v1 S5 u6 G& t, c) {" }                candidate(j) = round(pop*rand(1));
9 Y: a. g: @8 V) R6 I. T                if candidate(j) == 07 a' j) P" ~( Z" `$ |# t$ m
                    candidate(j) = 1;
0 C/ t' N- P2 B* c, h2 w0 S                end
, g9 {: b, ?, r" e            end
' J0 ?' o3 D" ^/ @0 y        end
4 Y9 h& X7 C! E$ W6 S3 n    end* Z0 M+ \/ m$ f& I3 \8 A
    for j = 1 : tour_size
; A, b6 O5 W! Y; j6 o. j        c_obj_rank(j) = chromosome(candidate(j),rank);5 Y$ `% `$ U8 Z* O
        c_obj_distance(j) = chromosome(candidate(j),distance);
( s9 R% b1 g# e: G4 l# l    end' j$ p8 F) w) V% ]0 g( \" B
    min_candidate = ...
. L6 ]. |4 A4 v: t+ r8 `% R$ Q        find(c_obj_rank == min(c_obj_rank));
4 M3 Y3 H6 z1 j' e    if length(min_candidate) ~= 1
& L3 ]$ L; H- k" K; V3 j        max_candidate = ...; t/ S5 B; w: D! A/ n
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));, j+ g7 e/ t9 I1 @2 M
        if length(max_candidate) ~= 1- p/ F$ e1 p( y0 |5 }0 U& y4 @
            max_candidate = max_candidate(1);0 o( L. `5 B: j1 m) S) l
        end5 k( @" n8 ?5 ~' q
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);* w5 O. C7 @  u) s
    else
& B) k8 R4 F/ ~9 f2 r! {        f(i,:) = chromosome(candidate(min_candidate(1)),:);
& C9 n; y1 G" a% ?! n& E    end
, x3 o! |  u# I* A1 ?end
' i0 w; y. k4 ?/ d4 ?" a# l0 }, V" c2 L1 q( t% x5 d3 m4 S$ @
" L+ T3 B* [1 V$ Q7 q4 c
⑤genetic_operator.m8 ^+ |( }( {' r% _" P
' C# V! P1 n; L$ ~  d' m" t
function f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)  O3 b# w) w0 n3 C
[N,m] = size(parent_chromosome);
7 A& {  _- a: ^; n" o) K9 ?" n$ x! G; G" ^# |0 |- B( t1 I
clear m
/ y2 {( \2 B# {3 Xp = 1;+ t3 I) {  x( j# V+ w6 t; M; C
was_crossover = 0;+ V# @* B# ^$ z( d
was_mutation = 0;
# t8 H7 b  h' x! c! Z* ~: ^/ J% R- Q2 w. G1 I
( j! r5 i" L) t% X+ x! R
for i = 1 : N
* j/ Z: @. y- Y& W0 K" t    % With 90 % probability perform crossover
1 V8 p( U- V! t  w/ w' ~, X1 L; E    if rand(1) < 0.9
6 \) h; z) ]1 w  t        % Initialize the children to be null vector.
  A1 {8 y9 }. k# a        child_1 = [];
* t- L+ Z; ]/ j$ _# x! c        child_2 = [];
' x% }: b  I% c  i/ T# V# w        % Select the first parent. R' V4 x7 I9 M! Y
        parent_1 = round(N*rand(1));
& M4 _4 z: O/ c! X        if parent_1 < 18 ], g" R% D+ U) ~' O
            parent_1 = 1;
3 p; A, I' X  K- ~( i        end
  f) i. S8 u7 g! Y" k; D        % Select the second parent
* I9 r- Y3 ?4 A3 u) J5 o3 Q! S2 b        parent_2 = round(N*rand(1));; K5 B5 ]4 f1 s6 H2 Z
        if parent_2 < 1) X/ `7 Z+ l# K6 ~
            parent_2 = 1;
! f0 e0 u: V; r- R( z  m        end) \' }1 N& M+ @
        % Make sure both the parents are not the same. 0 @9 L- C6 u- G. @" I$ O2 r0 I
        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
/ e0 L7 d: S( j; c. u            parent_2 = round(N*rand(1));
/ B, x' U( P: @+ h            if parent_2 < 1
2 [, @% h" s1 z/ g( l                parent_2 = 1;
5 m5 Z$ [3 H0 N, K4 C4 @5 h3 z0 d7 @            end
$ s# l7 k* }/ U' n/ D        end
% o  M2 X8 K2 i( z3 G1 D        % Get the chromosome information for each randomnly selected
. L) V. G/ k2 i8 l) C" I0 a        % parents
, f/ m! T: L& I7 a& u/ D; D        parent_1 = parent_chromosome(parent_1,:);
$ R) Y  R. w+ u  ~4 u5 W$ @$ Y7 _        parent_2 = parent_chromosome(parent_2,:);
  s: F! I" b2 Q0 H5 B7 w        % Perform corssover for each decision variable in the chromosome.8 L( G! C% W( z$ ?, R0 T
        for j = 1 : V9 b& F( U7 u- a( `& E8 q
            % SBX (Simulated Binary Crossover).
  E1 U9 K; J" R            % For more information about SBX refer the enclosed pdf file.
3 n* f2 r$ \" x" e            % Generate a random number
/ C( w  S6 f8 s5 @0 A4 A( f7 [            u(j) = rand(1);# t+ ~" P* ^, K6 _$ e# i: _. |
            if u(j) <= 0.58 X2 J2 z8 g1 ?7 c$ H
                bq(j) = (2*u(j))^(1/(mu+1));
8 ?+ x( x2 ~3 ~# O4 z. D            else
. @' W. g2 t$ ]& I" z                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));% T# ]" W1 }+ d% E* w) _
            end
8 e' a. R; y; @            % Generate the jth element of first child% H: Q  }% g  r7 B, ?
            child_1(j) = ...
) B2 i8 r* x& v                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
+ D) S% p/ [6 D4 U1 v. K, S% F( I            % Generate the jth element of second child0 w3 `9 o$ I+ ?( X
            child_2(j) = ...$ D3 f" D+ ~$ p* X8 j
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));$ q, I6 \8 Y8 a! a
            % Make sure that the generated element is within the specified
; h) Z2 U; k# K            % decision space else set it to the appropriate extrema.
' u  z- C6 e6 Y% Q0 O7 r: S            if child_1(j) > u_limit(j)* S; }/ ~9 ?: o
                child_1(j) = u_limit(j);
; ~+ e9 [1 B: c" c* s% h            elseif child_1(j) < l_limit(j)
  ?( q/ \5 C9 b+ n" }8 l3 J5 m                child_1(j) = l_limit(j);
; T' a3 @- Y. [$ j            end9 k1 y1 Y) i) I$ Y% [5 M
            if child_2(j) > u_limit(j)) Z3 y1 ~3 t0 p: f; h0 g/ }
                child_2(j) = u_limit(j);
3 A# Z! b+ f# B+ z5 d" p4 u5 v            elseif child_2(j) < l_limit(j)
" ]) p/ W" g$ F6 b3 Z, F! d                child_2(j) = l_limit(j);
7 U* M2 o& y0 a            end; L9 e8 b6 E, t& v
        end8 u7 G- f' q( \7 h
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
, \  n% E; }# q# K        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);7 Y. ^8 R, d. y6 U8 `' }
        was_crossover = 1;
1 y$ M  r# h, ~4 A8 ?- R# Z) j        was_mutation = 0;
% D, T) s2 X3 F; p! l    % With 10 % probability perform mutation. Mutation is based on
9 w- h& j3 K8 B4 Y- m( T& I  x    % polynomial mutation.
2 A6 [/ a8 K0 E# \    else
5 G% Y  Y) g5 M- K# o3 X( X" N        % Select at random the parent.' Q& J! t& Q4 a& x
        parent_3 = round(N*rand(1));( I" v% i1 r- B- F+ o
        if parent_3 < 1
- T  `) U  a5 W            parent_3 = 1;8 h' r( k- K+ r* [! ~" }
        end
6 {0 H/ T0 c% Q9 C1 a8 i7 }        % Get the chromosome information for the randomnly selected parent.
  c' L: e, _- F0 O% c/ t        child_3 = parent_chromosome(parent_3,:);0 ^$ d$ C* g- t  V- B' F' R5 @) e
        % Perform mutation on eact element of the selected parent.
& i3 O! y) Y+ {) g. z! i( n        for j = 1 : V
1 W$ x6 `' V0 y) V           r(j) = rand(1);9 G* @0 E6 u5 W& N0 v
           if r(j) < 0.5
- ]" A, F, `. p# H4 I& j; A               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
; P" |0 X8 q9 x           else
5 @* p. p; L4 [               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));& ?) d9 E* z. k1 D, f
           end( ~; g( P% a) H/ F. r! ?1 z
           % Generate the corresponding child element.! Y6 a4 j( t1 E1 [( @7 f* X+ E5 U
           child_3(j) = child_3(j) + delta(j);
2 k% l/ r) c4 T5 N0 ^3 s, q           % Make sure that the generated element is within the decision: l( F3 @( e# W, R
           % space.- Z: W" R& `7 o" ?$ n& G
           if child_3(j) > u_limit(j)
+ I! |) ?! w* s: [9 b! B; i2 r               child_3(j) = u_limit(j);) @" a2 ^1 _7 u1 w$ Y
           elseif child_3(j) < l_limit(j)
' w0 j6 d, P" q" L  `, H               child_3(j) = l_limit(j);5 k, w. r) F7 }4 t! ?- U4 P
           end9 n3 e/ K! K7 [2 n' b
        end
( v, S, E* n6 l4 D$ b% n$ I" e4 d        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);5 I- b3 q7 q2 a5 u/ l. ]- ^
        % Set the mutation flag
1 J' h2 r& T3 _! h4 _# }9 }2 h4 ^        was_mutation = 1;3 q" O! x; @$ r8 y
        was_crossover = 0;$ R2 w" y5 F9 t6 U
    end
8 P1 W7 s7 f& }# L% \- d$ b    if was_crossover# ^* [/ k* u' [) [
        child(p,:) = child_1;* d4 U4 x7 o  ], k. K# E
        child(p+1,:) = child_2;
0 w, J$ X, C" ~( l        was_cossover = 0;
; {! E3 |  h' T6 k) V        p = p + 2;# N6 m! g' V7 R  T7 ~' |
    elseif was_mutation
; a! Q( ~/ ^/ V( }, w3 _: x        child(p,:) = child_3(1,1 : M + V);1 Y0 a: p% G; H! V
        was_mutation = 0;
3 z  |) I8 n  j8 a        p = p + 1;
! c2 L) \& z( V( G8 L: l( u6 F# \    end; e1 x( ], ]+ t$ S' A5 p
end
. g) R9 i& V% |  x5 c  Hf = child;
0 N, [4 ~1 l8 T* M8 o
  k! J% G2 z# C0 C4 b! \  ~) r. h+ H2 K, ?4 z" \" f3 {% c4 z
⑥replace_chromosome.m5 i, G5 z2 X; D9 S8 d  I
) f% p3 Z( E" @
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)/ q, Z. P3 b; p6 y5 M/ H* x2 x

0 W) f8 t. ]( y1 f" I2 I" W" ^. o% ~0 K9 ?9 S
[N, m] = size(intermediate_chromosome);) O5 I+ t% |$ z

2 p7 T& F# v) G1 S% Get the index for the population sort based on the rank$ X& g9 E- d. n4 y/ j
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
0 Z0 D' U' d( e# Q; n$ ]  U8 @! D# M4 |8 s
clear temp m
2 n% w8 l$ H$ @5 e: x3 F/ @2 W, b& P
% Now sort the individuals based on the index
8 c( A0 n& \9 o$ z3 p. R% T' ]: hfor i = 1 : N
3 f; Z$ n- X6 i7 M7 p    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);6 s1 O' o2 `2 s* i& T! B
end% F2 g  G7 I9 i  O: N

4 |2 \9 X  E# Q, {% Find the maximum rank in the current population) k' X" e8 {; |6 G2 l
max_rank = max(intermediate_chromosome(:,M + V + 1));3 y# r: \' u& j- E

1 g8 C( h! }, n% K* A5 g9 c1 V% Start adding each front based on rank and crowing distance until the3 S. Y+ m* a0 X
% whole population is filled.
, H& }$ Q2 O# x* h) I* I! J" Xprevious_index = 0;
1 f* m% R9 O6 k# h6 yfor i = 1 : max_rank
/ ]) T1 _5 u  W3 G) p0 |- p5 D+ g: C    % Get the index for current rank i.e the last the last element in the# B6 h( h6 F% y8 X0 Q( D
    % sorted_chromosome with rank i. - b1 ^: }. W: k9 S5 r/ [& X
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));8 \" ~7 A, D$ ~" B, Q. |' Z& k
    % Check to see if the population is filled if all the individuals with8 ~. V# e" L- W+ g
    % rank i is added to the population.
# ]  A' g' r$ ^& w    if current_index > pop
' l  b+ u: Z6 k, A: X1 ~        % If so then find the number of individuals with in with current
2 A, Y  k# y3 k3 R5 A1 r# p        % rank i.# @% @7 p( x+ G. G( G4 o" r
        remaining = pop - previous_index;4 Y" h% j8 [9 @& \8 K
        % Get information about the individuals in the current rank i.& b+ z. f4 O: Y- U" I- R
        temp_pop = ...7 ~6 o9 e# ^  Z% b# e1 t; l$ w
            sorted_chromosome(previous_index + 1 : current_index, :);
8 S9 a- G+ f" f9 N( q, L: e; X6 n        % Sort the individuals with rank i in the descending order based on
$ R, N6 A$ @" K5 g$ O+ r        % the crowding distance.
2 L1 s; r% D0 v% Q3 ^        [temp_sort,temp_sort_index] = ...8 A  _& l  R* a5 i
            sort(temp_pop(:, M + V + 2),'descend');
9 v  X* X- Q  Z- j        % Start filling individuals into the population in descending order- v! W1 n& \: I$ L
        % until the population is filled.0 d3 l! R1 T, Q: k( ~. Z- y& z! A, j
        for j = 1 : remaining0 f  a1 C$ m- s9 z' w
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);( A' @6 f* u6 Y& [! h* s; y- _. F
        end
2 R5 V1 `0 e: }        return;
7 U) U9 `4 g: ]' g+ g: g    elseif current_index < pop- a8 u# f0 X' B0 p( @
        % Add all the individuals with rank i into the population.
2 S9 _  K* R7 |1 P& B& J        f(previous_index + 1 : current_index, :) = ...
; B  w; O9 a4 d" w& u            sorted_chromosome(previous_index + 1 : current_index, :);8 d" K$ h% s/ b3 v8 H* F
    else4 F+ Y% M! ^9 I  u
        % Add all the individuals with rank i into the population.
2 \0 ~) V4 w3 u4 ^        f(previous_index + 1 : current_index, :) = ...$ E# a6 h' z5 U
            sorted_chromosome(previous_index + 1 : current_index, :);
) e, V4 x4 z3 z! L        return;  l2 T" \3 M  T! F- i9 F
    end
) p6 A" g  i4 ]  P: a% d8 |    % Get the index for the last added individual.
0 z' }6 a, E* G, F" @    previous_index = current_index;
3 p6 a3 ]' D* Y  pend, {8 ?0 C0 x. B% j9 Z
  i$ Q8 Z$ O- m5 ^( e# H' }3 z

: L5 c. P+ e1 t5 C8 F1 z! D& C⑦自定义评价函数(我选用的ZDT1函数)- p6 Q& G7 L+ p  Y- w8 e+ H8 Q

/ d' f, w; E! J' S9 Z+ i- p. Ofunction f = evaluate_objective(x, M, V)
3 f, m% x/ _# h  O: A5 x6 cf = [];
; g- y; Z$ \$ V0 yf(1) = x(1);+ Y9 U/ X8 h- `3 ~- N3 J/ {
g = 1;: W! T1 v1 o# K: w4 P
sum = 0;
* |% u0 |6 l  f; |( h3 _/ Jfor i = 1:V1 ^) [& ~! R/ O* `* A+ R7 D) V* P
    sum = sum + x(i);
7 o2 u' g* E' g# Oend- ?: z5 G( J3 z7 |
sum = sum + 9*(sum / (V-1));
7 e0 k7 ]" M$ P5 A. E. |& N0 Ag = g + sum;( Z4 ~% |: f3 Z: o. @
f(2) = g * (1 - sqrt(x(1) / g));! F+ j  F& n" q) ^- [
end/ |# z, Z$ W1 D/ J  s- s

2 M/ t0 Q0 r) f8 r! Q5 w0 h. U9 {) B9 d- ~
500个种群运行500代的结果:
; Z- ]2 e: E2 X/ U+ y# c& W
9 `  K& v# O; @6 X; D5 P& Z5 _0 p" i5 D, R0 S2 P- P
; x5 Y3 q0 m/ L* c5 T

0 g& X3 n7 B2 j4 q' l" S3 o) [% w1 y# j0 j: A6 M$ x
9 `% e6 U% v8 U3 ?9 C, y9 }

作者: regngfpcb    时间: 2020-5-20 13:09
NSGA2算法MATLAB




欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/) Powered by Discuz! X3.2