EDA365电子论坛网
标题:
True-Hspice Device模型参考手册
[打印本页]
作者:
snowwolfe
时间:
2008-3-25 17:14
标题:
True-Hspice Device模型参考手册
Table of Contents
* q- W' _5 `7 I6 N
Audience ............................................................................................. iii
; p" c% b2 y; w# ~, h& Y0 U# j
Related Documents ............................................................................. iii
% d4 I& R: |* R3 t' Z
Conventions ........................................................................................ iv
. y7 E9 i, J' N8 v
Obtaining Customer Support .............................................................. vi
K) P/ Q2 t( q& Z: d
Other Sources of Information ............................................................ vii
' y* U4 x' z2 Y$ c
Revision History ............................................................................... viii
. o! y8 _: T; f* X; f
Chapter 1 - Overview of Models ..................................................................... 1-1
+ v1 {% R( r& s6 j6 P" S
Using Models to Define Netlist Elements .............................................. 1-2
/ F* Z/ ~: d$ j, a/ t: _, q
Supported Models for Specific Simulators ....................................... 1-2
5 h2 G$ O- c7 `4 h9 F/ x% n
Selecting Models .............................................................................. 1-3
- [0 `3 z4 t; [ [' s ]8 F; S
Example ............................................................................................ 1-3
' _ P2 I' \5 C
Chapter 2 - Using Passive Device Models....................................................... 2-1
0 K1 z- |# c- J: y6 B
Resistor Device Model and Equations .................................................... 2-2
1 ?4 `' J5 e( M1 v7 o
Wire RC Model ................................................................................. 2-2
7 g0 n% E" z. Z$ v! F
Resistor Model Equations ................................................................. 2-5
: e2 Q4 V( r& M6 i1 f, H3 \
Capacitor Device Model and Equations ............................................... 2-10
6 q) {) K" _: U; T. M6 p( d/ f8 ~
Capacitance Model ......................................................................... 2-10
2 \0 I* s* _3 \! F! Z: ^* o5 I' R
Capacitor Device Equations ........................................................... 2-11
' G6 a2 Y. F0 z0 j0 m
Inductor Device Model and Equations ................................................. 2-14
1 t/ ~( `" K/ e$ P4 |" S+ ^
Inductor Core Models ..................................................................... 2-15
- X8 J* u; {$ L4 g( @' q
Magnetic Core Element Outputs .................................................... 2-18
: }: S: i+ L! ~, l" ] p; e
Inductor Device Equations ............................................................. 2-19
3 W' d( s- {3 W8 ?3 H2 _6 k F
Jiles-Atherton Ferromagnetic Core Model ..................................... 2-21
, z' G {3 C6 j# w o
Power Sources ....................................................................................... 2-30
( _3 H4 P f' I+ e$ x9 W
Independent Sources ....................................................................... 2-30
3 U* u x+ ]& r, n% _; M
Controlled Sources .......................................................................... 2-33
: R; B4 S, L# \2 S1 e' Q' O
Chapter 3 - Using Diodes ................................................................................. 3-1
& \! b/ M/ t7 a
Diode Types ............................................................................................ 3-2
j1 M# l0 ~ y: b& i; M
Using Diode Model Statements .............................................................. 3-3
( \/ ]7 M2 a) \ [! J3 o
Setting Control Options .................................................................... 3-3
( ~2 _+ n0 D5 i9 y& A
Specifying Junction Diode Models ......................................................... 3-5
5 G6 E$ `2 i! l# Q+ Z0 q) n6 P/ C
Using the Junction Model Statement ................................................ 3-6
" a/ a5 P; Q0 q1 @
Using Junction Model Parameters .................................................... 3-7
: V. d$ N7 H* ^0 W3 O8 c
Geometric Scaling for Diode Models ............................................. 3-13
$ D' S: g& ?# s: F% `9 x
Defining Diode Models ................................................................... 3-15
7 c% @# y/ \5 ^4 q& Y. a" j
Determining Temperature Effects on Junction Diodes ................... 3-18
4 i! w" n Y, A; ^& }2 h; w: w+ X1 L
Using Junction Diode Equations ........................................................... 3-21
. u, Q! T* `% o$ w
Using Junction DC Equations ......................................................... 3-22
, X2 N) g8 s2 k9 A T0 z! M: Q
Using Diode Capacitance Equations ............................................... 3-25
: r6 U. ]. a! j) J! @
Using Noise Equations .................................................................... 3-27
- a6 f0 g5 f2 m
Temperature Compensation Equations ........................................... 3-28
1 i5 U7 u( d# a* c
Using the Junction Cap Model .............................................................. 3-32
4 h1 A' t5 @# a) a; \* @: @
Setting Juncap Model Parameters ................................................... 3-33
1 _1 x% l7 r6 l, g S" T
Theory ............................................................................................. 3-33
* V0 {" I" b1 q( P/ j8 x
JUNCAP Model Equations ............................................................. 3-38
+ N O: j& g! A+ y* a, c" D
Using the Fowler-Nordheim Diode ...................................................... 3-46
" @# `# M8 w1 ^! b+ M
Converting National Semiconductor Models ........................................ 3-48
, H+ ~- S; \: { H2 M
Chapter 4 - Using BJT Models ........................................................................ 4-1
# m T! \+ ~" C
Using BJT Models .................................................................................. 4-2
1 i5 D, @/ k. ~6 p
Selecting Models ............................................................................... 4-2
' H, O5 N1 b8 `# W+ m8 D
BJT Model Statement ............................................................................. 4-4
1 ~$ K6 K! a4 H6 J' E
Using BJT Basic Model Parameters ................................................. 4-5
0 r2 {$ J! v+ [ f. Y7 f" A
Handling BJT Model Temperature Effects ..................................... 4-15
# l% `- B2 o9 r; ?- T: O
BJT Device Equivalent Circuits ............................................................ 4-21
" L4 P# H1 V# w
Scaling ............................................................................................. 4-21
$ s& }8 @+ C! r# N) u+ [1 Y. b
Understanding the BJT Current Convention ................................... 4-21
( J) V# N2 R# E
Using BJT Equivalent Circuits ....................................................... 4-22
0 H! M7 }+ j0 h
BJT Model Equations (NPN and PNP) ................................................. 4-30
) I- A5 Z/ z1 X+ H" }! r# E* @
Understanding Transistor Geometry in Substrate Diodes .............. 4-30
2 m) d0 L' o" Q- {) x5 a0 r5 t/ @1 z
Using DC Model Equations ............................................................ 4-32
" g1 k$ S- f. c) p/ ~
Using Substrate Current Equations ................................................. 4-33
- e" K; h9 h+ {7 ~( y. V
Using Base Charge Equations ......................................................... 4-34
' |) r: S9 W- `7 X4 D" w
Using Variable Base Resistance Equations .................................... 4-35
; D4 U2 b% y6 f* M. W
Using BJT Capacitance Equations ........................................................ 4-36
5 |4 E+ G: p) ~0 ?8 O* D
Using Base-Emitter Capacitance Equations ................................... 4-36
! p- m ?7 k$ q! j
Determining Base Collector Capacitance ....................................... 4-38
' i' _% Y! S/ H) T
Using Substrate Capacitance ........................................................... 4-40
* {" C) {1 U; R, m. \( k
Defining BJT Noise Equations ............................................................. 4-42
7 E# \, f/ L6 G, g! V
BJT Temperature Compensation Equations ......................................... 4-44
8 G H( k& m: ^: f
Using Energy Gap Temperature Equations .................................... 4-44
6 e0 _$ e. f& w1 r
Saturation and Beta Temperature Equations, TLEV=0 or 2 ........... 4-44
s+ X% i3 [% Y8 J0 k1 Q
Using Saturation and Temperature Equations, TLEV=1 ................ 4-46
3 ?' M+ h. P9 ~5 ?2 m: b
Using Saturation Temperature Equations, TLEV=3 ....................... 4-47
. s. N3 Q$ _( A+ s) ^2 l: i3 A
Using Capacitance Temperature Equations .................................... 4-49
. V6 \" S& q0 }& u
Parasitic Resistor Temperature Equations ...................................... 4-51
( a l7 w; T5 ?9 r# U* a
Using BJT Level=2 Temperature Equations .................................. 4-52
) l, \% X0 L' ~
BJT Quasi-Saturation Model ................................................................ 4-53
7 n6 i( { \+ T+ Q% ]) R# V
Using Epitaxial Current Source Iepi ............................................... 4-55
9 b2 {. H% y! H5 F! M- c: B
Epitaxial Charge Storage Elements Ci and Cx ............................... 4-55
0 p8 h, s- M2 Y1 g, Z. w: M- W
Converting National Semiconductor Models ........................................ 4-58
, @ a7 o D4 [8 M! G5 X3 [
VBIC Bipolar Transistor Model ........................................................... 4-60
1 E# G% [* M; j' q
Understanding the History of VBIC ............................................... 4-60
4 q& ?, q$ t: ~3 [
VBIC Parameters ............................................................................ 4-61
; S+ s4 J9 \% @7 `1 H4 Q! C% t7 \
Noise Analysis ................................................................................ 4-62
+ V' C' q$ `7 u% A
Level 6 Philips Bipolar Model (MEXTRAM Level 503) ..................... 4-71
( b% G) m3 `/ q) {# R
Level 6 Element Syntax .................................................................. 4-71
" |* ]7 A# t4 U- b/ W: F; S1 i
Level 6 Model Parameters .............................................................. 4-72
0 y4 E9 s3 @8 y, o8 j5 `; Y0 Z
Level 6 Philips Bipolar Model (MEXTRAM Level 504) ..................... 4-78
, C) h9 G n/ B+ ~5 Q; x" G" Y7 }0 z
Notes ............................................................................................... 4-79
$ U( p% Q( x% }% k, _9 _
Level 6 Model Parameters (504) ..................................................... 4-80
r& q* W& o3 K; t
Level 8 HiCUM Model ......................................................................... 4-94
4 L4 ^2 f- C! u6 d ^' a
What is the HiCUM Model? ........................................................... 4-94
" U+ p$ `/ C) e2 l
HiCUM Model Advantages ............................................................ 4-94
8 f' {. I+ m( D. \
Avant! HiCUM Model vs. Public HiCUM Model .......................... 4-96
+ U& Y# ~& F1 |7 ]
Model Implementation .................................................................... 4-96
" x1 Y4 z$ @# e% w% Z6 e
Internal Transistors ......................................................................... 4-97
- t8 Y# C- _. E$ ?! {8 ~
Level 9 VBIC99 Model ...................................................................... 4-110
+ l% e8 N7 _/ I8 s2 G
Element Syntax of BJT Level 9 .................................................... 4-110
$ `' E3 c3 @' c! [& _1 x7 c+ m4 C
Effects of VBIC99 ........................................................................ 4-112
" z8 c3 E1 ]. z* p9 `/ n% J
Model Implementation .................................................................. 4-112
3 y3 d0 ~9 ^7 c6 }3 E
Example ........................................................................................ 4-119
5 z& s, F8 d6 v( I- p
VBIC99 Notes for HSPICE Users ................................................ 4-123
; C0 d( C2 j! A8 }1 A; |3 h- V) V( i
Level 10 Phillips MODELLA Bipolar Model .................................... 4-124
8 M D& n7 h( F7 G8 j
Model Parameters ......................................................................... 4-124
1 B3 x' W; w b- e7 Q
Equivalent Circuits ........................................................................ 4-129
! }, T( l' G5 W9 j7 p8 H' d
DC Operating Point Output .......................................................... 4-131
: T! Q3 x9 Y4 S7 i* }
Model Equations ........................................................................... 4-132
- G1 J% b/ p$ [6 U& {9 j
Temperature Dependence of the Parameters ................................ 4-142
5 v4 ~3 X7 [; A3 e9 c
Level 11 UCSD HBT Model .............................................................. 4-146
7 K% A) z" n2 g8 c& I
Using the UCSD HBT Model ....................................................... 4-146
0 s4 E% o, e& o* M8 Z. U
Description of Parameters ............................................................. 4-147
, g- b0 U9 o: \/ |, S# ~ s
Model Equations ........................................................................... 4-152
% ^8 o% k1 ^8 n! f
Equivalent Circuit ......................................................................... 4-163
[; G6 v. j: _& W x
Example Avant! True-Hspice Model Statement ........................... 4-165
7 Y) t& c! U7 E( C3 X. u0 |0 g
Chapter 5 - Using JFET and MESFET Models............................................. 5-1
, w- M2 b# N2 V% u
Understanding JFETs .............................................................................. 5-2
8 R8 N" a, j3 O: G
Specifying a Model ................................................................................. 5-3
: D& E8 b: G: ]' @* _! j
Understanding the Capacitor Model ....................................................... 5-5
9 o8 q8 W; f$ q: r; o: Q9 |& S
Model Applications ........................................................................... 5-5
$ l. ?" Z( N3 o4 k0 ~
Control Options ................................................................................. 5-6
' N# K: d( E& m2 J. g
JFET and MESFET Equivalent Circuits ................................................. 5-7
0 h9 l0 j3 p3 i+ d, Y& [$ L6 c, `
Scaling ............................................................................................... 5-7
& T; q* x% n4 f0 h% | V$ q
Understanding JFET Current Convention ........................................ 5-7
, m2 B6 R6 B- C' j5 h; I# X
JFET Equivalent Circuits .................................................................. 5-8
: W7 F `' |. \0 b
JFET and MESFET Model Statements ................................................. 5-13
7 R$ V/ _! k! \$ q8 z! ^
JFET and MESFET Model Parameters ........................................... 5-13
4 N8 U6 o1 E& C" I3 m" S
Gate Diode DC Parameters ............................................................. 5-15
# J0 v! y* A/ Q! u
JFET and MESFET Capacitances ................................................... 5-25
6 k% x/ \4 b O0 @. I6 }6 i
Capacitance Comparison (CAPOP=1 and CAPOP=2) ................... 5-29
& d+ C! @/ P" l* ?8 K
JFET and MESFET DC Equations ................................................. 5-31
9 ^, O- i1 \, i5 A4 e2 _; _
JFET and MESFET Noise Models ....................................................... 5-35
& f; V' J5 ?" p
Noise Parameters ........................................................................... 5-35
2 Z. m3 W/ s" l# I" G
Noise Equations .............................................................................. 5-35
8 _; \" u/ v2 L7 y4 S# ?
Noise Summary Printout Definitions .............................................. 5-36
Y- K" f% k( W3 i$ t( ?
JFET and MESFET Temperature Equations ........................................ 5-37
2 u: E& \& d, z2 @
Temperature Compensation Equations ........................................... 5-40
, @+ E2 E6 ?) J. [. }; V
。。。。。。。。。。。
* M: M+ l* T1 Z( K. [7 g
1 ?; `' W- C* W# [
7 t5 B' f8 {! [' r" M
作者:
soda2010
时间:
2008-8-21 22:17
xiexiele
作者:
superfect
时间:
2008-11-6 21:01
好 啊。感谢啊
作者:
winstonguo
时间:
2009-4-18 17:20
感激!
作者:
muzi0623
时间:
2009-12-25 15:03
谢谢,学习中
作者:
kyang74
时间:
2010-1-30 15:13
谢谢~
作者:
pzh2006
时间:
2010-3-5 15:25
好东西
作者:
andy.wei
时间:
2012-6-5 20:36
谢谢分享
作者:
zl0721
时间:
2012-7-6 14:47
kan kan
作者:
Colin_Zhou
时间:
2012-8-8 16:18
thanks a lot ,very good materials
作者:
ssping
时间:
2012-10-14 16:39
先下了,谢谢!努力学习
作者:
shuaiwang
时间:
2015-4-16 22:26
谢谢
作者:
灯火枫桥
时间:
2015-4-18 17:03
谢谢啊!
作者:
狂想的旅程
时间:
2018-1-28 23:03
xiexie lou zhu
作者:
狂想的旅程
时间:
2018-1-28 23:06
好资料
作者:
Justinkunt
时间:
2018-3-16 21:55
支持,頂一個
作者:
claptrap
时间:
2018-3-29 09:43
谢谢~
作者:
helicopter
时间:
2018-4-8 10:59
谢谢分享
作者:
bingshuihuo
时间:
2023-6-11 10:40
0 t+ c! A( ]6 r4 @
好 啊。感谢啊
欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/)
Powered by Discuz! X3.2