EDA365电子论坛网
标题: MATLAB —— 信号处理工具箱之 ifft 的案例分析 [打印本页]
作者: mytomorrow 时间: 2019-12-11 09:00
标题: MATLAB —— 信号处理工具箱之 ifft 的案例分析
" p/ M' p! h2 P# _
案例分析
Inverse Transform of Vector
Padded Inverse Transform of Matrix
Conjugate Symmetric Vector
8 n9 c& _8 V' Y) a' l+ `
9 p% k5 M0 W$ a3 D: U, ^ t案例分析
$ \5 O2 l N: u6 V; h$ b( M# XInverse Transform of Vector3 Q. d: b, Z! g: `: g' J" s1 P- F
3 k- R$ v3 R8 f& H8 j+ H" d
- % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.
- %
- % Create a vector and compute its Fourier transform.
- X = [1 2 3 4 5];
- Y = fft(X)
- % Y = 1×5 complex
- %
- % 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i ⋯
- %
- % Compute the inverse transform of Y, which is the same as the original vector X.
- ifft(Y)
- % ans = 1×5
- %
- % 1 2 3 4 51 j4 a7 [" D; L3 V7 s$ E! h
0 S# Y, K( ^& V) g+ h
& Z4 r! i$ j3 x2 e' d
5 J& D+ u, e8 y
0 U. v8 x6 S, o N7 e
结果如下:
8 a8 d1 V) I1 o
9 U; r& N/ Q: D. a ifft_vector
. B7 J/ h' X( \3 J k' J2 D
- T. t# T5 d0 H; c6 V4 b7 g+ T% ~Y =
! \! C# s l- ^9 D/ U
, M l8 ]* |" ?7 q n4 b/ R 1 至 4 列9 i; z/ E' Q: ]+ Z! l8 ^1 i+ |7 ?
@7 H# A6 h, w
15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i# p) C& L/ E x9 E4 v8 g( Y
6 w9 Z3 w) a5 h! s: d+ B 5 列
. E+ L) X' @# \! \% e0 m, G4 K4 J, q* b5 H# I+ ~8 D1 g
-2.5000 - 3.4410i
8 j2 ?+ T% L4 L" k( e8 S$ q
* c$ Z4 b- P% S7 t: tans =
* J+ P( Z! O. B, }( m
- G& I: l7 _' L; h" ~ 1 2 3 4 5
7 t% z" Z* }( K- d& W" Z6 ^$ B/ S* \% g0 ]" f' p
. l7 h# T5 \0 S- V* ?$ Z) a
Padded Inverse Transform of Matrix
+ f3 n7 R, n: k6 P/ P- y2 x4 I, ]9 m- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n,2)
- size(X)
) t% J2 D/ A0 {
" Q+ `9 U& X* f. f3 E {
' h1 W7 m: _8 l% \6 K; G# U& J8 \' ]& w8 B
6 t; e8 `4 Z7 j9 W- s
结果如下:3 x) Y' D! a# b* k
& A8 I9 R0 e+ W6 iY =& D4 y$ A. U) U
4 y# D* ]. ~9 g O 0.8147 0.9134 0.2785 0.9649 0.9572
p. b1 C5 r) K4 X8 x& z4 S y 0.9058 0.6324 0.5469 0.1576 0.4854; I3 x9 l8 c1 {" e
0.1270 0.0975 0.9575 0.9706 0.8003
6 e- i* O6 d' d( J
: ^) J9 u. e/ i; }. J+ bX =8 Q5 b) A7 ]) H5 p0 u2 |# s
4 { f& m+ [: Z0 P/ L 1 至 4 列
, G# d2 ^ m! B; p% v, a! b- R6 j
* g d# C Q& x5 m( e 0.4911 + 0.0000i -0.0224 + 0.2008i 0.1867 - 0.0064i -0.0133 + 0.1312i* V9 P, }3 I: f
0.3410 + 0.0000i 0.0945 + 0.1382i 0.1055 + 0.0593i 0.0106 + 0.0015i
( J. k) _3 K( y8 P$ x% N5 R8 l; m0 k 0.3691 + 0.0000i -0.1613 + 0.2141i -0.0038 - 0.1091i -0.0070 - 0.0253i7 w0 x* B4 \3 Q; w4 _
% M. I D; Z4 J& U 5 至 8 列% R# D. B8 r: ^2 ?8 C+ c
7 @$ y! o- n9 o& ~; }9 V& O 0.0215 + 0.0000i -0.0133 - 0.1312i 0.1867 + 0.0064i -0.0224 - 0.2008i* p% j- D; c6 @$ K# \" d
0.1435 + 0.0000i 0.0106 - 0.0015i 0.1055 - 0.0593i 0.0945 - 0.1382i; Y) a5 | ?; S4 G
0.1021 + 0.0000i -0.0070 + 0.0253i -0.0038 + 0.1091i -0.1613 - 0.2141i
! i$ z5 i2 o8 V D: ]5 @7 E' b' `+ R
. j$ n% K0 f3 _3 b8 ?( y1 mans =0 h; u3 }& i) o5 P
( Y* v! h' S5 u+ \# k' A' j1 W 3 8
; a: [% N& @% F7 i8 Y3 h5 l' l
) S' @% p+ w2 Y2 Y! ~! r上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:
' X- t7 f% O/ \) W v& E2 ?" x' P2 Z0 v/ v( a
X = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:4 G: k; D4 ?' P! G! \
' a. D! K f! n- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n)
- size(X)/ P- _8 s& ~! b6 P
( \$ \1 y8 A$ A! w( {, x1 Y# _. Y4 e1 ~. J
Y =
! n5 k% i" R2 Y- x- S& X" G1 l3 r* R1 | r* m, f7 s
0.1419 0.7922 0.0357 0.6787 0.39228 _1 V$ J2 E3 u3 F3 `1 `; a
0.4218 0.9595 0.8491 0.7577 0.6555: |* a3 N" R; N1 p0 `
0.9157 0.6557 0.9340 0.7431 0.1712
$ h; d( z! F4 f- q' P, `" c: l5 g% y. h( a* d
X =
* |4 O! T& S6 n1 ?: y/ L3 O8 ]' E* x, h+ ~+ T
1 至 4 列7 s; x$ ~9 m6 ?3 @0 r9 J9 b
3 w$ x" l; b, j3 C" y/ L1 @
0.1849 + 0.0000i 0.3009 + 0.0000i 0.2274 + 0.0000i 0.2725 + 0.0000i- |& P6 Y; [ B! t; {: F
0.0550 + 0.1517i 0.1838 + 0.1668i 0.0795 + 0.1918i 0.1518 + 0.1599i! w& E- E$ b# g# L
-0.0967 + 0.0527i 0.0171 + 0.1199i -0.1123 + 0.1061i -0.0080 + 0.0947i# ~7 w0 b" L, A& y# s1 |6 v
-0.0195 - 0.0772i 0.0142 + 0.0028i -0.0706 - 0.0417i 0.0179 - 0.0259i$ |& {6 w) W5 T3 b; |
0.0795 + 0.0000i 0.0611 + 0.0000i 0.0151 + 0.0000i 0.0830 + 0.0000i$ _+ F }# R. y/ {# j
-0.0195 + 0.0772i 0.0142 - 0.0028i -0.0706 + 0.0417i 0.0179 + 0.0259i
: H. S! E' \6 c& i. {) h -0.0967 - 0.0527i 0.0171 - 0.1199i -0.1123 - 0.1061i -0.0080 - 0.0947i" [: B8 A& D5 s2 M- A$ t
0.0550 - 0.1517i 0.1838 - 0.1668i 0.0795 - 0.1918i 0.1518 - 0.1599i$ W' \! U- j2 K, R: B
+ P: l! N0 ` X% p2 P
5 列
7 K0 g* L& e7 p1 A4 w
+ H$ w6 T7 L( M4 }5 X6 W' U/ n 0.1524 + 0.0000i+ Z7 [5 _& | |- Z# o, }
0.1070 + 0.0793i J- G. I6 z5 Y, {4 C# G8 k
0.0276 + 0.0819i4 j1 V# ]( r; j' V( ^# l9 Z
-0.0089 + 0.0365i
! O( Y L2 V+ e2 m2 V1 F, t* S -0.0115 + 0.0000i
5 A! W6 ~$ ^ }. E) \% v -0.0089 - 0.0365i/ ?$ ]8 T, U( k
0.0276 - 0.0819i
* j" f% d! G- p+ ~# j6 U 0.1070 - 0.0793i
! |3 P0 ?7 G9 O. r/ X! V8 N/ q$ P& M( \: } p
ans =
( A4 ]8 k! m$ S
% k$ H/ A8 y2 K8 |+ U: g; t9 I+ F \ 8 5
& G5 @( L* Y+ d- r
" n) \" d8 I0 g, P4 O3 C- _) b+ K. W- C( [
Conjugate Symmetric Vector
% P2 W A; v a$ o( ^" J7 M# E n7 u. f/ C! e
For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option, 2 i2 L3 [, `9 N0 g
which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
$ }; H3 E1 y% Y- ]6 E! Z) P( L: R {& J& R% E S4 r f; f: B, `9 K
Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
( [9 d" M1 T* v2 f! T0 O1 dThen, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
, X4 O' j0 Q1 @. n2 q$ Z( x# K) S
1 L& v* e9 ^, x9 Y$ v3 H" k对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。5 u) T# r/ |; n* r1 p2 D% ?; B+ t
4 \9 f+ Y2 q; P& L# C: {
创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。) M5 S3 Y9 ]1 _7 r
0 g! G: E! t/ {' i$ p* ^- clc
- clear
- close all
- % For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- % which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
- %
- % Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
- % Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
- Y = [1 2:4+eps(4) 4:-1:2]
- % Y = 1×7
- %
- % 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000 ⋯
- X = ifft(Y)
- % X = 1×7 complex
- %
- % 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i ⋯
- Xsym = ifft(Y,'symmetric')
- % Xsym = 1×7
- %
- % 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213 ⋯
, t' z% D/ a& Y7 g
% T f. o: f8 X
% d8 I8 r# u8 J. l$ V, U, y
! I" {2 E2 K3 N7 j
6 i/ r/ M" v y5 P4 n& x
结果如下:
/ B$ c# o u6 j5 ^- z& h; C5 ?5 Z! t: H- }
Y =
" \ ]1 J4 m& R! x5 @' [* g
; q. L2 }" {4 Q% r- @* \/ E% { 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000
( ?$ a ?7 w& z6 }% T8 i
[ @0 t- S! e) m5 nX =
" [ u( g/ H4 b% ]
# L! N3 J9 N2 N0 @! ?& j0 G 1 至 4 列9 ? f/ P: W7 @! j# @2 c, @
C$ e8 q7 [- i 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i
+ g6 n8 ~% ^; ^- x4 ~2 h
6 V4 b3 S% n/ u 5 至 7 列. j- W4 E' z/ D& V" Y
( C& e* B8 i9 K" C4 _# s -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i- o4 ^( s% N7 `4 A: Q
* B5 g$ y9 l8 Q- \$ Z$ U; v
Xsym =; n9 B+ f- }! K' Y- z( ^- }
! R# |) J; ^0 z: Z. z 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213
3 ~8 E8 Q/ Q$ P: Q; Y$ V
& f9 Y$ W& Y* X- T8 K, y) i: B8 Y/ f/ l& O' ~5 G/ Q
* i4 m# M; u) E8 M# D9 [
" S3 V( @, T q% b/ E; i8 i1 t: Q& }
( o ^+ D. g; N9 K1 R. T7 H6 l$ N$ Q8 J% ?/ z' t2 m
" p& K% L. F4 S/ d- G* B: e: l9 x
4 W9 V7 H8 F3 o! {6 o! R$ A) b `; T4 _. N+ L7 j7 L( O5 v
作者: Neken 时间: 2019-12-11 19:22
谢谢分享
作者: sharkN 时间: 2019-12-12 18:58
学习咯
| 欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/) |
Powered by Discuz! X3.2 |