EDA365电子论坛网

标题: Schaum's Digital Signal Processing--good book [打印本页]

作者: Haiting32451    时间: 2016-11-15 15:51
标题: Schaum's Digital Signal Processing--good book
D-S-P  b-o-o-k share/ Y& V9 H( k2 i8 N% O
5 B  W9 \" r# X1 Z4 Q
Chapter 1. Signals and Systems 12 Y1 k$ @  L- a% `2 _3 u
1.1 Introduction 1
( o( J. m+ a6 v1.2 Discrete-Time Signals 1
. q6 I) j6 X. c  ~' p: D9 B: Z9 u2 t1.2.1 Complex Sequences 2
$ Z3 v: X7 `+ f+ U5 F" {7 D$ R, J1.2.2 Some Fundamental Sequences 2
" o/ ]- ^7 Y& M: J7 Y1.2.3 Signal Duration 3% L3 N" }' e. Z4 E- l$ A
1.2.4 Periodic and Aperiodic Sequences 3( w* `) b! T% W7 A  N
1.2.5 Symmetric Sequences 40 a; ~/ v0 M( M; f2 L) K
1.2.6 Signal Manipulations 4, J; ~* m8 k' U4 d& z
1.2.7 Signal Decomposition 62 Y9 O. m, }" _! D0 R% ]5 s- u$ D
1.3 Discrete-Time Systems 7
  V; E$ I7 m+ D8 t9 A$ K1.3.1 Systems Properties 7
) m+ z4 r! F$ Q9 G1 ^1.4 Convolution 11
6 s/ v; K/ n3 e! f* y1.4.1 Convolution Properties 11( d: g8 f8 Q5 e/ o
1.4.2 Performing Convolutions 123 T' E* B, M$ h- I8 d" V1 l# P
1.5 Difference Equations 15. u4 _; V& q" t/ G& H
Solved Problems 18
/ a! c+ V3 L% Q$ o) C1 GChapter 2. Fourier Analysis 55
8 M+ P2 F! v* b3 V2.1 Introduction 55  L0 f9 X: v) X! C; ^
2.2 Frequency Response 55
, ~4 H, R$ g; G" V2.3 Filters 586 F' c5 I/ l! @8 P  A/ U9 `- {
2.4 Interconnection of Systems 59
. r! l$ T4 q. C+ P" H2.5 The Discrete-Time Fourier Transform 61
6 K1 z  x6 _- R# Y+ W2.6 DTFT Properties 627 O. Q5 t8 f3 c. z3 N3 q# T& x
2.7 Applications 64
/ _% h5 [  ]# K! @2.7.1 LSI Systems and LCCDEs 64- B4 ~  g, G9 u' I* z7 b
2.7.2 Performing Convolutions 65- U4 R3 |  P! h: h
2.7.3 Solving Difference Equations 665 r$ O3 r. ?% |8 A  ?: r8 Y. E2 |
2.7.4 Inverse Systems 66
/ e, K: r3 f4 g3 Z5 Y' R9 a' u0 H9 BSolved Problems 67
) x! g/ h' |8 q& f. QChapter 3. Sampling 1011 n' }" A& v) O2 d
3.1 Introduction 101+ H2 w6 t9 p% M2 U1 p
3.2 Analog-to-Digital Conversion 101
  G( a9 f$ y9 Z" r& V1 B% x, R3.2.1 Periodic Sampling 1019 v  D. b8 s; F) u1 a4 h9 U. T$ \% x
3.2.2 Quantization and Encoding 104
4 Z2 H2 D, u7 y1 y3.3 Digital-to-Analog Conversion 1062 h; L! M' s, O6 `# O
3.4 Discrete-Time Processing of Analog Signals 108* s. x0 J/ T" V, F8 S
3.5 Sample Rate Conversion 110# h, Z. v% W7 |* |- A/ p; ]
3.5.1 Sample Rate Reduction by an Integer Factor 110
8 Y- Z! z2 K4 H$ w) j7 q3.5.2 Sample Rate Increase by an Integer Factor 111
, J1 q4 D2 z' X) N. h, [2 X9 z! A/ j3.5.3 Sample Rate Conversion by a Rational Factor 113
, P7 u* ?; F' ~% o4 P$ l8 KSolved Problems 114
+ p" h  R" a7 t/ i( wChapter 4. The Z-Transform 142
: z* K; |# m% N9 R5 y2 L  G' E8 ]+ h4.1 Introduction 142
" ]! k) o! U7 `9 l0 a# A$ e; s4.2 Definition of the z-Transform 142' c6 |+ U& w( p4 q& J# {
4.3 Properties 1460 A: s# _( }3 g4 h- L
vii
) `. B6 t1 ]3 G% W! G4.4 The Inverse z-Transform 1490 V/ A9 d8 d1 L8 r" S4 o1 r* m6 m
4.4.1 Partial Fraction Expansion 149+ s# B  @/ s' H# S% W
4.4.2 Power Series 150; m1 u- a6 K6 h" q2 t
4.4.3 Contour Integration 151
9 s( T/ \0 v' q; Y  |4.5 The One-Sided z-Transform 151
3 i8 s% @- L( G4 G8 a6 _6 k' ySolved Problems 152; G" a% j3 ]1 a# B8 o
Chapter 5. Transform Analysis of Systems 183* {4 R9 A7 B% T2 y
5.1 Introduction 183! |: N3 F. Z- I
5.2 System Function 1835 Y3 g) ^9 Y  }/ C
5.2.1 Stability and Causality 184- Q. b. T' F' ?. d& }
5.2.2 Inverse Systems 186% c0 N/ w( `; O: D
5.2.3 Unit Sample Response for Rational System Functions 187
3 D: j6 }! a8 \7 S. w  W( D8 @3 l5.2.4 Frequency Response for Rational System Functions 1886 T7 v0 c/ q8 H( G" s5 L! _
5.3 Systems with Linear Phase 189
" i) w  \' K# N+ s5.4 Allpass Filters 193
6 f3 D+ w6 x, M1 ?) T" _5.5 Minimum Phase Systems 194- c8 S0 [; V2 T$ h, n
5.6 Feedback Systems 195
. [" c' I; P  B+ o2 xSolved Problems 196
0 E1 o+ @' l$ M2 R% Y  AChapter 6. The DFT 223
2 X5 @9 U- ^4 R6.1 Introduction 223
4 v  w# U6 y8 ~. F6.2 Discrete Fourier Series 223# v1 a4 D* e0 l: i; X' V
6.3 Discrete Fourier Transform 226
8 J$ K4 @$ g4 f0 u6.4 DFT Properties 2277 d9 r6 d0 ^. u) d9 s' G- T
6.5 Sampling the DTFT 231" n* |# U; `5 c) y& s9 U
6.6 Linear Convolution Using the DFT 232
( J4 P& {! }/ y2 }1 Q: H" z! QSolved Problems 235
8 p* P- H3 Z* M6 aChapter 7. The Fast Fourier Transform 262
- v2 K* {& ~3 S. ?# z) ]7.1 Introduction 2623 W3 y& `$ Q+ X2 j
7.2 Radix-2 FFT Algorithms 2623 r$ [0 r9 |1 E: z7 `! f+ t
7.2.1 Decimation-in-Time FFT 262
9 Y' }9 s0 J' s) a7.2.2 Decimation-in-Frequency FFT 266
# X4 A2 Q, ~+ o6 U9 w2 `0 q# K7.3 FFT Algorithms for Composite N 267
% k& j% @+ R* Q7.4 Prime Factor FFT 271
+ \5 q5 |5 ~2 v- X7 `4 P; NSolved Problems 273: |% Y9 c' @0 w# i2 a
Chapter 8. Implementation of Discrete-Time Systems 2877 K* d" I0 u& y" {
8.1 Introduction 287
% ^3 M' X- Z. f; P/ {- u8.2 Digital Networks 287
' ^+ X  g/ _; U# F0 y8.3 Structures for FIR Systems 289
+ ]( h+ F0 K; m8.3.1 Direct Form 289
& g( M  q" m5 O) D1 U/ ~5 p& t8.3.2 Cascade Form 289; ^/ w. ?, H8 g6 y3 o" _
8.3.3 Linear Phase Filters 289
, M: l4 T  _' G1 v7 q- [3 [* ~8.3.4 Frequency Sampling 2917 O' C! }$ J; x& p
8.4 Structures for IIR Systems 291
  i$ w" u6 ?& I/ ~& m- @3 D4 ^8.4.1 Direct Form 292
2 y& X+ K( G3 u4 a8.4.2 Cascade Form 294
  n3 L; y/ A" e! V8.4.3 Parallel Structure 295
) r/ I, k! s& ~6 M& }) {( V8.4.4 Transposed Structures 2962 p' L( S% M; E" u
8.4.5 Allpass Filters 296
! F/ k. l  ~% A" m5 s8 g1 ?( W8.5 Lattice Filters 298& M2 V2 s4 J' T' X
8.5.1 FIR Lattice Filters 298
6 A5 ^) Q+ @8 }; ], t8.5.2 All-Pole Lattice Filters 300
' E: j6 S5 E* s; O3 wviii
; e& C% _& t3 z+ [: |* e- \4 b- T8.5.3 IIR Lattice Filters 301
8 ~& A4 E( F; N8.6 Finite Word-Length Effects 3027 ~- ~' c, o$ n* }
8.6.1 Binary Representation of Numbers 302
' p4 G0 Q* t3 I# }( U8.6.2 Quantization of Filter Coefficients 3040 B/ o& P" X( Z# \, K3 Y
8.6.3 Round-Off Noise 306
7 g; R; P6 O1 A% n) i  F8.6.4 Pairing and Ordering 309# q% s7 s3 {* e# h4 ~* U
8.6.5 Overflow 309
' S- ?1 H7 z2 O+ h8 g- H1 u+ j9 WSolved Problems 310
( e4 U9 p+ S4 g4 E  r, V! LChapter 9. Filter Design 3586 I0 t& x* a6 E0 G& G, o
9.1 Introduction 358
6 e7 E; E  j0 s5 v1 q1 w; t$ m9.2 Filter Specifications 358
. i. y8 ]% l* B9 S: E9.3 FIR Filter Design 359
; s0 A3 H2 t, L/ \  p4 v9.3.1 Linear Phase FIR Design Using Windows 359" v. @. G7 e6 q  k" y4 |, V- L3 g
9.3.2 Frequency Sampling Filter Design 363( `# T; H& C9 v% h) S
9.3.3 Equiripple Linear Phase Filters 363
8 i) G$ \; B. O2 d8 _% ^9.4 IIR Filter Design 366
, y# E! ?: w4 ~/ g9.4.1 Analog Low-Pass Filter Prototypes 367" z$ e4 u6 V, \
9.4.2 Design of IIR Filters from Analog Filters 373
/ ~) F! z# U+ w  }3 @& s( H9.4.3 Frequency Transformations 376
$ E8 A, ]2 c5 P- A. B( a  q9.5 Filter Design Based on a Least Squares Approach 376: U7 t: |! \& i- Q/ l; S
9.5.1 Pade Approximation 3779 D. B, P* F7 b
9.5.2 Prony's Method 378' F1 S, g) ]6 U7 h0 e  e
9.5.3 FIR Least-Squares Inverse 379
+ p; {2 \4 T$ M. TSolved Problems

Schaum's Digital Signal Processing -- 447.pdf

11.53 MB, 下载次数: 3, 下载积分: 威望 -5


作者: helendcany    时间: 2016-11-16 11:25
支持,支持' L  I& Z) e( O) X1 P) C

作者: Dedy01    时间: 2016-11-16 15:44
Get it for refer,THX!
. p9 v% t; `7 U




欢迎光临 EDA365电子论坛网 (https://bbs.eda365.com/) Powered by Discuz! X3.2